Skip to main content

Epitaxial Growth of Metals on Semiconductors Via Electrodeposition

  • Chapter
  • First Online:
Nanofabrication

Abstract

This chapter reviews the literature on the epitaxial growth of metals on semiconductors by electrodeposition. The known examples for Si and GaAs are described with results from in-situ characterization of their surfaces prior and during metal growth in aqueous electrolytes. The application of electrodeposition to semiconductor nanowire contact formation is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mathews JW. Epitaxial growth. New York: Academic; 1975.

    Google Scholar 

  2. Lobo VMM, Quaresma JR. Handbook of electrolyte solutions, Physical science data, vol. 41. Amsterdam: Elsevier; 1989. Bradford SA. Corrosion control. 2nd ed. Edmonton: CASTI Publishing Inc.; 2002; Switzer JA, Hodes G. Mat Res Soc Bull. 2010;10:743–49.

    Google Scholar 

  3. Budevski E, Staikov G, Lorenz WJ. Electrochemical phase formation and growth. Weinheim: VCH Verlagsgesellschaft mbH; 1996.

    Book  Google Scholar 

  4. Reid J, McKerrow A, Varadarajan S, Kozlowski G. Solid State Technol. 2010;53:14–6.

    CAS  Google Scholar 

  5. Ingole S, Manandhar P, Wright JA, Nazaretski E, Thompson JD, Picraux ST. Appl Phys Lett. 2009;92:223118–3.

    Article  Google Scholar 

  6. Liu C, Einabad OS, Watkins S, Kavanagh KL. 217th ECS meeting, Abstract #1577.

    Google Scholar 

  7. Gerischer H. J Vac Sci Technol. 1978;15:1422–8.

    Article  CAS  Google Scholar 

  8. Bao ZL. Epitaxial metal-GaAs contacts by electrodeposition. PhD thesis, Simon Fraser University; 2006.

    Google Scholar 

  9. Rhoderick EH, Williams RH. Metal-semiconductor contacts. Oxford: Clarendon Press; 1988.

    Google Scholar 

  10. Woodall JM, Freeouf JL, Pettit GD, Kirchner P. J Vac Sci Technol. 1981;19:626–7.

    Article  CAS  Google Scholar 

  11. Magnussen OM, Hotlos J, Nichols RJ, Kolb DM, Behm RJ. Phys Rev Lett. 1990;64:2929–32.

    Article  CAS  Google Scholar 

  12. Scherb G, Kazimirov A, Zegenhagen J, Lee TL, Bedzyk MJ, Noguchi H, Uosaki K. Phys Rev B. 1998;58:10800–5.

    Article  CAS  Google Scholar 

  13. Memming R. Semiconductor electrochemistry. Weinheim: Wiley-VCH; 2001.

    Google Scholar 

  14. Muñoz AG, Lewerenz HJ. J Electrochem Soc. 2009;156:D184–7.

    Article  Google Scholar 

  15. Tseng WF, Liau ZL, Lau SS, Nicolet M-A, Mayer JW. Thin Solid Films. 1977;46:99–107.

    Article  CAS  Google Scholar 

  16. Murarka SP. Silicides for VLSI applications. New York: Academic; 1983.

    Google Scholar 

  17. Tu KN, Mayer JW, Feldman LC. Electronic thin film science: for electrical engineers and materials scientists. New York: McMillan; 1992.

    Google Scholar 

  18. Poate JM, Tu KN, Mayer JW. Thin films: interdiffusion and reactions. New York: Wiley; 1978.

    Google Scholar 

  19. Grupp C, Taleb-Ibrahimi A. Phys Rev B. 1998;57:6258–61.

    Article  CAS  Google Scholar 

  20. Ghosh K, Chowdhury NKD. Int J Electron. 1983;54:615–23.

    Article  CAS  Google Scholar 

  21. Hoffmann PM, Radisic A, Searson PC. J Electrochem Soc. 2000;147:2576–80. Radisic A, Ross FM, Searson PC. J Phys Chem B. 2006; 110: 7862–7868; Guo L, Searson PC. Electrochim Acta. 2010;55:4086–91.

    Article  CAS  Google Scholar 

  22. Zegenhagen J, Renner FU, Reitzle A, Lee TL, Warren S, Stierle A, Dosch H, Scherb G, Fimland BO, Kolb DM. Surf Sci. 2004;573:67–79.

    Article  CAS  Google Scholar 

  23. Forment S, Van Meirhaeghe RL, De Vrieze A, Strubbe K, Gomes WP. Semicond Sci Technol. 2001;16:975–81.

    Article  CAS  Google Scholar 

  24. Oskam G, Long JG, Nikolova M, Searson PC. Mater Res Soc Symp. 1997;451:257–66.

    CAS  Google Scholar 

  25. Ziegler JC, Reitzle A, Bunk O, Zegenhagen J, Kolb DM. Electrochim Acta. 2000;45:4599–605. Kolb DM, Randler RJ, Wielgosz RI, Ziegler JC. Mater Res Soc Symp. 1997;451:19–30.

    Article  CAS  Google Scholar 

  26. Prod’homme P, Maroun F, Cortès R, Allongue P. Appl Phys Lett. 2008;93:171901–3.

    Article  Google Scholar 

  27. Prod’homme P, Warren S, Cortès R, Jurca HF, Maroun F, Allongue P. ChemPhysChem. 2010;11:2992–8.

    Article  Google Scholar 

  28. Ganz E, Hwang I-S, Xiong F, Theiss SK, Golovehenko J. Surf Sci. 1991;257:259–73.

    Article  CAS  Google Scholar 

  29. Yeh J-J, Hwang J, Bertness K, Friedman DJ, Cao R, Lindau I. Phys Rev Lett. 1993;70:3768–71.

    Article  CAS  Google Scholar 

  30. Allongue P, Maroun F. Mater Res Soc Bull. 2010;35:761–70.

    Article  CAS  Google Scholar 

  31. Clawson A. Mater Sci Eng R Rep. 2001;R31:1–438.

    Article  CAS  Google Scholar 

  32. Yoon HJ, Choi MH, Park IS. J Electrochem Soc. 1992;139:3229–34.

    Article  CAS  Google Scholar 

  33. Hinkle CL, Sonnet AM, Vogel EM, McDonnell S, Hughes GL, Milojevic M, Lee B, Aguirre-Tostado FA, Choi KJ, Kim HC, Kim J, Wallace RM. Appl Phys Lett. 2008;92:071901–3.

    Article  Google Scholar 

  34. Erné BH, Ozanam F, Chazalviel J-N. J Phys Chem B. 1999;103:2948–62.

    Article  Google Scholar 

  35. Erné BH, Stchakovsky M, Ozanam F, Chazalviel JN. J Electrochem Soc. 1998;145:447–56. Erné BH, Ozanam F, Chazalviel JN. Phys Rev Lett 1998;80:4337–40.

    Article  Google Scholar 

  36. Vereeken PM, Vanden Kerchove F, Gomes WP. Electrochim Acta. 1996;41:95–107. Strubbe K, Vereecken PM, Gomes WP. J Electrochem Soc. 1999;146:1412–20.

    Article  Google Scholar 

  37. Tian Z, Tian CS, Yin LF, Wu D, Dong GS, Jin X, Qiu ZQ. Phys Rev B. 2004;70:012301-1-4.

    Google Scholar 

  38. Bao ZL, Grist S, Majumder S, Xu LB, Jensen E, Kavanagh KL. J Electrochem Soc. 2009;156:D138–45.

    Article  CAS  Google Scholar 

  39. Hart R, Midgley PA, Wilkinson A, Schwarzacher W. Appl Phys Lett. 1995;67:1316–8.

    Article  CAS  Google Scholar 

  40. Prinz GA. Phys Rev Lett. 1985;54:1051–4.

    Article  CAS  Google Scholar 

  41. Ford A, Bonevich JE, McMichael RD, Vaudin M, Moffat TP. J Electrochem Soc. 2003;150:C753–9.

    Article  CAS  Google Scholar 

  42. Bao ZL, Kavanagh KL. J Cryst Growth. 2005;287:514–7.

    Google Scholar 

  43. Prinz A, Krebs JJ. Appl Phys Lett. 1981;39:397–9.

    Article  CAS  Google Scholar 

  44. Kebe T. SQUID-magnetometry on Fe monolayers on GaAs(001) in UHV. Ph.D. Thesis, University of Duisberg-Essen, 2006.

    Google Scholar 

  45. Isakovic A, Carr DM, Strand J, Schultz BD, Palmstrøm CJ, Crowell PA. Phys Rev B. 2001;64:161304–4.

    Article  Google Scholar 

  46. Hanbicki AT, Jonker BT, Itskos G, Kioseoglou G, Petrou A. Appl Phys Lett. 2002;80:1240–2.

    Article  CAS  Google Scholar 

  47. Liu YK, Scheck C, Schad R, Zangari G. Electrochem Solid-State Lett. 2004;7:D11–3. Scheck C, Evans P, Schad R, Zangari G. J Appl Phys 2003;93:7634–36.

    Article  CAS  Google Scholar 

  48. Bao ZL, Kavanagh KL. J Appl Phys. 2005;98:066103–3.

    Article  Google Scholar 

  49. Svedberg EB, Mallett JJ, Bendersky LA, Roy AG, Egelhoff WF, Moffat TP. J Electrochem Soc. 2006;153:C807–13.

    Article  CAS  Google Scholar 

  50. Bao ZL, Majumder S, Talin AA, Arrott AS, Kavanagh KL. J Electrochem Soc. 2008;155:H841–8.

    Article  CAS  Google Scholar 

  51. Majumder S, Arrott AS, Kavanagh KL. J Appl Phys. 2009;105:07D543-3.

    Google Scholar 

  52. Mallett JJ, Svedberg EB, Vaudin MD, Bendersky LA, Shapiro AJ, Egelhoff WF, Moffat TP. Phys Rev B. 2007;75:85304-1-7.

    Article  Google Scholar 

  53. Matlosz M. J Electrochem Soc. 1993;140:2272–9.

    Article  CAS  Google Scholar 

  54. Evans P, Scheck C, Schad R, Zangari G. J Mag Magn Mater. 2003;260:467–72.

    Article  CAS  Google Scholar 

  55. Yang FY, Liu K, Chien CL, Searson PC. Phys Rev Lett. 1999;82:3328–31. Vereeken PM, Rodbell K, Ji C, Searson PC. Appl Phys Lett 2005;86:121916–3.

    Article  CAS  Google Scholar 

  56. Bao ZL, Kavanagh KL. Appl Phys Lett. 2006;88:022102–3. J Vac Sci Technol B. 2006;24:2138–43.

    Article  Google Scholar 

  57. Depestel LM, Strubbe K. J Electroanal Chem. 2004;572:195–201.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks SFU student collaborators Bao, Majumder, Chao, Ahktari-Zavareh, Grist, Spiga, Shaw, Berring, Radich, Bratvold, Cheng, Jensen, and Abbet. She is also grateful for many useful discussions with attendees of the Gordan Conferences on Electrodeposition, and funding support from NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen L. Kavanagh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Kavanagh, K.L. (2012). Epitaxial Growth of Metals on Semiconductors Via Electrodeposition. In: Stepanova, M., Dew, S. (eds) Nanofabrication. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0424-8_9

Download citation

Publish with us

Policies and ethics