Skip to main content

Nanoimprint Technologies

  • Chapter
  • First Online:
Nanofabrication

Abstract

The advances in nanosciences, micro- and nanotechnology are driving the research and development efforts to fabricate micro- and nano-structures with a high precision in a wide variety of materials using novel lithography methods. These emerging techniques, which include self-assembly, scanning probes, micro-contact printing, and nanoimprint lithography (NIL), are intensively studied to, on the one hand, assess to what degree they meet the demands of ultrahigh precision and high density of nanostructures posed by the semiconductor industry and, on the other hand, to examine them with respect to cost-efficiency to produce components for photonic, data storage, sensing and fluidic or biological applications. This chapter focuses on recent advances in nanoimprint lithography as it is perhaps among the most mature emerging nanofabrication methods. Nanoimprint lithography technology faces some challenges to reach the requirements of the semiconducting integrated circuits manufacturers in terms of overlay accuracy, defectivity and throughput but it meets already some needs of data storage, light extraction, fluidic and biological applications. Significant efforts are currently being made to develop parallel printing on large area and step and repeat techniques. In this chapter, we review the principles of nanoimprint lithography and its capability to scale-up the replication of nanostructures by parallel printing, step and stamp and by step and flash, the latter a technique that use UV curable resist. We identify current capabilities of the different variations of nanoimprint lithography and provide examples of the fabrication of three-dimensional structures and nanostructures in inorganic sol-gel materials. Finally, an overview of the wide range of applications realized so far by nanoimprint lithography is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chou SY, Krauss PR, Renstrom PJ. Appl Phys Lett. 1995;67:3114.

    Article  CAS  Google Scholar 

  2. Chou SY, Krauss PR, Renstrom PJ. J Vac Sci Technol B. 1996;14:4129.

    Article  CAS  Google Scholar 

  3. Austin MD, Ge H, Wu W, Li M, Yu Z, Wasserman D, Lyon SA, Chou SY. Appl Phys Lett. 2004;84:5299.

    Article  CAS  Google Scholar 

  4. International Technology Roadmap for Semiconductors 2004 Update,www.itrs.net/Common/2004Update/2004_07_Lithography.pdf

  5. Schift H, Saxer S, Park S, Padeste C, Pieles U, Gobrecht J. Nanotechnology. 2005;16:171.

    Article  Google Scholar 

  6. van Zanten JH, Wallace WE, Wu WL. Phys Rev E. 1995;52:R3329–R3332.

    Article  Google Scholar 

  7. Dalnoki-Veress K, Forrest JA, Murray C, Gigault C, Dutcher JR. Phys Rev E. 2001;63:031801.

    Article  CAS  Google Scholar 

  8. Kim EJ, Tomaszewski JE, de Pablo JJ, Nealey PF, White CC, Fryer DS, Peters RD, Wu WL. Macromolecules. 2001;34:5627.

    Article  Google Scholar 

  9. Sharp JS, Forrest JA. Phys Rev E. 2003;67:031805.

    Article  CAS  Google Scholar 

  10. Murray CA, Wubbenhorst M, Dutcher JR. Eur Phys J. 2003;12:S109.

    Google Scholar 

  11. Heyderman LJ, Schift H, David C, Gobrecht J, Schweizer T. Microelectron Eng. 2000;54:229.

    Article  CAS  Google Scholar 

  12. Sirotkin V, Svintsov A, Zaitsev S, Schift H. Microelectron Eng. 2006;83:880.

    Article  CAS  Google Scholar 

  13. Beck M, Graczyk M, Maximov I, Sarwe E-L, Ling TGI, Keil M, Montelius L. Microelectron Eng. 2002;61–62:441.

    Article  Google Scholar 

  14. Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y. Langmuir. 1999;15:4321.

    Article  CAS  Google Scholar 

  15. Shafrin EG, Zisman WA. J Phys Chem. 1960;64:519.

    Article  CAS  Google Scholar 

  16. Chen JK, Ko FH, Hsieh KF, Chou CT, Chang FC. J Vac Sci Technol B. 2004;22:3233.

    Article  CAS  Google Scholar 

  17. Heidari B, Maximov I, Sarwe E-L, Montelius L. J Vac Sci Technol B. 1996;14:2961.

    Article  Google Scholar 

  18. Mäkelä T, Haatainen T, Majander P, Ahopelto J, Lambertini V. Jpn J Appl Phys. 2008;47:5142.

    Article  Google Scholar 

  19. Haatainen T, Majander P, Makela T, Ahopelto J, Kawaguchi Y. Jpn J Appl Phys. 2008;47:5164.

    Article  CAS  Google Scholar 

  20. Haisma J, Verheijen M, Heuvel KD, Berg JD. J Vac Sci Technol B. 1996;14:4124.

    Article  CAS  Google Scholar 

  21. Stewart MD, Johnson SC, Sreenivasan SV. J Microlith Microfab Microsyst. 2005;4:011002.

    Article  Google Scholar 

  22. Bender M, Fuchs A, Plachetka U, Kurz H. Microelectron Eng. 2006;83:827.

    Article  CAS  Google Scholar 

  23. Yang XM, Xu Y, Lee K, Xiao S, Kuo D, Weller D. IEEE Trans Magn. 2009;45:833.

    Article  CAS  Google Scholar 

  24. Bailey TC, Resnick DJ, Mancini D, Nordquist KJ, Dauksher WJ, Ainley E, Talin A, Gehoski K, Baker JH, Choi BJ, Johnson S, Colburn M, Meissl M, Sreenivasan SV, Ekerdt JG, Willson CG. Microelectron Eng. 2002;61:461.

    Article  Google Scholar 

  25. www.molecularimprints.com

  26. Ruiz R, Kang H, Detcheverry F, Dobisz E, Kercher D, Albrecht T, de Pablo J, Neley P. Science. 2008;321:936.

    Article  CAS  Google Scholar 

  27. Park HJ, Kang MG, Guo LJ. ACS NANO. 2009;3:2601.

    Article  CAS  Google Scholar 

  28. Mancini DP, Gehoski KA, Ainley E, Nordquist KJ, Resnick DJ, Bailey TC, Sreenivasan SV, Ekerdt JG, Willson CG. J Vac Sci Technol B. 2002;20:2896.

    Article  CAS  Google Scholar 

  29. Morecroft D, Yang JKW, Schuster S, Berggren KK, Xia Q, Wu W, Williams RS. J Vac Sci Technol B. 2009;27:2837.

    Article  CAS  Google Scholar 

  30. Michel B, Bernard A, Bietsch A, Delamarche E, Geissler M, Winkel D, Stutz R, Wolf H. Chimia. 2002;56:527.

    Article  Google Scholar 

  31. Schmid H, Michel B. Macromolecules. 2000;33:3042.

    Article  CAS  Google Scholar 

  32. Li Z, Gu Y, Wang L, Ge H, Wu W, Xia Q, Yuan C, Chen Y, Cui B, Williams RS. Nano Lett. 2009;9:2306.

    Article  Google Scholar 

  33. Lee D, Cho EH, Kim HS, Lee BK, Lee MB, Sohn JS, Lee CH, Suh SJ. J Vac Sci Technol B. 2008;26:514.

    Article  CAS  Google Scholar 

  34. Muehlberger M, Boehm M, Bergmair I, Chouiki M, Schoeftner R, Kreindl G, Kast M, Treiblmayr D, Glinsner T, Miller R, Platzgummer E, Loeschner H, Joechl P, Eder-Kapl S, Narzt T, Lausecker E, Fromherz T. “Nanoimprint lithography from CHARPAN Tool exposed master stamps with 12.5 nm hp” Microelectron Eng. 2011;88:2070–2073.

    Google Scholar 

  35. Studer K, Decker C, Beck E, Schwalm R. Prog Org Coat. 2003;48:92.

    Article  CAS  Google Scholar 

  36. Vogler M, Wiedenberg S, Mühlberger M, Bergmair I, Glinsner T, Schmidt H, Kley E-B, Grützner G. Microelectron Eng. 2007;84:984.

    Article  CAS  Google Scholar 

  37. Kim EK, Stacey NA, Smith BJ, Dickey MD, Johnson SC, Trinque BC, Willson CG. J Vac Sci Technol B. 2004;22:131.

    Article  CAS  Google Scholar 

  38. Kim EK, Stewart MD, Wu K, Palmieri FL, Dickey MD, Ekerdt JG, Willson CG. J Vac Sci Technol B. 2005;23:2967.

    Article  CAS  Google Scholar 

  39. Song S, Kim S-M, Choi B-Y, Jung G-Y, Lee H. J Vac Sci Technol B. 2009;27:1984.

    Article  CAS  Google Scholar 

  40. Decker C, Decker D. J Macromol Sci Pure Appl Chem A. 1997;34:605.

    Article  Google Scholar 

  41. Wu C-C, Hsu SL-C, Liao W-C. Microelectron Eng. 2009;86:325.

    Article  CAS  Google Scholar 

  42. Kim JY, Choi D-G, Jeong J-H, Lee E-S. Appl Surf Sci. 2008;254:4793.

    Article  CAS  Google Scholar 

  43. Byeon K-J, Hong EJ, Park H, Cho J-Y, Lee S-H, Jhin J, Baek JH, Lee H. Thin Films. 2011;519:2241.

    Article  CAS  Google Scholar 

  44. Michaelson T, Sreenivasan SV, Ekerdt J, Willson CG. Proc SPIE. 1999;3676:379.

    Article  Google Scholar 

  45. Bailey TC, Johnson SC, Sreenivasan SV, Ekerdt JG, Willson CG, Resnick DJ. J Photopolym Sci Technol. 2002;15:481.

    Article  CAS  Google Scholar 

  46. Malloy M, Litt LC. J Photopolym Sci Technol. 2010;23:749.

    Article  CAS  Google Scholar 

  47. Higashiki T. Challenges to next generation lithography. MNE 2009 Conference, Ghent – Belgium, 29 Sep. 2009.

    Google Scholar 

  48. Resnick D. Oral presentation in EIPBN 2010 conference. Anchorage, 2010.

    Google Scholar 

  49. Peroz C, Dhuey S, Volger M, Wu Y, Olynick D, Cabrini S. Nanotechnology. 2010;21:445301.

    Article  CAS  Google Scholar 

  50. Otto M, Bender M, Richter F, Hadam B, Kliem T, Jede R, Spangenberg B, Kurz H. Microelectron Eng. 2004;73:152.

    Article  Google Scholar 

  51. Otto M, Bender M, Zhang J, Fuchs A, Wahlbrink T, Bolten J, Spangenberg B, Kurz H. Microelectron Eng. 2007;84:980.

    Article  CAS  Google Scholar 

  52. Peroz C, Dhuey S, Goltsov A, Volger M, Harteneck B, Ivonin I, Bugrov A, Cabrini S, Babin S, Yankov V. Microelectron Eng. 2011;88:2092.

    Google Scholar 

  53. Vlasov YA, Bo XZ, Sturm JC, Norris DJ. Nature. 2001;414:289.

    Article  CAS  Google Scholar 

  54. Khandurina J, Guttman A. J Chromatogr A. 2002;943:159.

    Article  CAS  Google Scholar 

  55. Wu H, Odom TW, Chiu DT, Whitesides GM. J Am Chem Soc. 2003;125:554.

    Article  CAS  Google Scholar 

  56. Yang Z, Yu Y, Li X, Bao H. Microelectron Reliab. 2006;46:805.

    Article  CAS  Google Scholar 

  57. Li M, Chen L, Chou SY. Appl Phys Lett. 2001;78:3322.

    Article  CAS  Google Scholar 

  58. Yamazaki K, Namatsu H. Microelectron Eng. 2004;73–74:85.

    Article  Google Scholar 

  59. Munnik F, Benninger F, Mikhailov S, Bertsch A, Renaud P, Lorenz H, Gmur M. Microelectron Eng. 2003;67–68:96.

    Article  Google Scholar 

  60. Freeman D, Madden S, Davies BL. Opt Express. 2005;13:3079.

    Article  CAS  Google Scholar 

  61. Romanato F, Businaro L, Vaccari L, Cabrini S, Candeloro P, De Vittorio M, Passaseo A, Todaro MT, Cingolani R, Cattaruzza E, Galli M, Andreani C, Di Fabrizio E. Microelectron Eng. 2003;67–68:479.

    Article  Google Scholar 

  62. Romanato F, Tormen M, Businaro L, Vaccari L, Stomeo T, Passaseo A, Di Fabrizio E. Microelectron Eng. 2004;73–74:870.

    Article  Google Scholar 

  63. Sun HB, Kawakami T, Xu Y, Ye JY, Matuso S, Misawa H, Miwa M, Kaneko R. Opt Lett. 2000;25:1110.

    Article  CAS  Google Scholar 

  64. Tormen M, Businaro L, Altissimo M, Romanato F, Cabrini S, Perennes F, Proietti R, Sun H-B, Kawata S, Di Fabrizio E. Microelectron Eng. 2004;73–74:535.

    Article  Google Scholar 

  65. Jeon S, Malyarchuk V, Rogers JA, Wiederrecht GP. Opt Express. 2006;14:2300.

    Article  Google Scholar 

  66. Tormen M, Businaro L, Altissimo M, Romanato F, Cabrini S, Perennes F, Proietti R, Sun H-B, Satoshi K, Di Fabrizio E. Microelectron Eng. 2004;73–74:535.

    Article  Google Scholar 

  67. Tormen M, Carpentiero A, Vaccari L, Altissimo M, Ferrari E, Cojoc D, Di Fabrizio E. J Vac Sci Technol B. 2005;23:2920.

    Article  CAS  Google Scholar 

  68. Kehagias N, Reboud V, Chansin G, Zelsmann M, Jeppesen C, Reuther F, Schuster C, Kubenz M, Gruetzner G, Sotomayor Torres CM. J Vac Sci Technol B. 2006;24:3002.

    Article  CAS  Google Scholar 

  69. Cheng X, Guo LJ. Microelectron Eng. 2004;71:277.

    Article  CAS  Google Scholar 

  70. Kehagias N, Chansin G, Reboud V, Zelsmann M, Schuster C, Kubenz M, Reuther F, Gruetzner G, Torres CMS. Microelectron Eng. 2007;84:921.

    Article  CAS  Google Scholar 

  71. Kehagias N, Reboud V, Chansin G, Zelsmann M, Jeppesen C, Schuster C, Kubenz M, Reuther F, Gruetzner G, Torres CMS. Nanotechnology. 2007;18:175303.

    Article  Google Scholar 

  72. Peroz C, Heitz C, Barthel E, Søndergård E, Goletto V. J Vac Sci Technol B. 2007;25:L27.

    Article  CAS  Google Scholar 

  73. Brendel R, Gier A, Menning M, Schmidt H, Werner JH. J Non-Cryst Solids. 1997;218:391.

    Article  CAS  Google Scholar 

  74. Marzolin C, Smith SP, Prentiss M, Whitesides GM. Adv Mater. 1998;10:571.

    Article  CAS  Google Scholar 

  75. Li M, Tan H, Chen L, Wang J, Chou SY. J Vac Sci Technol B. 2003;21:660.

    Article  CAS  Google Scholar 

  76. Harnagea C, Alexe M, Schilling J, Choi J, Wehrspohn RB, Hesse D, Gosele U. Appl Phys Lett. 2003;83:1827.

    Article  CAS  Google Scholar 

  77. Okinaka M, Tsukagoshi K, Aoyagi Y. J Vac Sci Technol B. 2006;24:1402.

    Article  CAS  Google Scholar 

  78. Rizzo G, Barila P, Galvagno S, Neri G, Arena A, Patane S, Saitta G. J Sol Gel Sci Technol. 2003;26:1017.

    Article  CAS  Google Scholar 

  79. Peroz C, Chauveau V, Barthel E, Søndergård E. Adv Mater. 2009;21:555.

    Article  CAS  Google Scholar 

  80. Cardinale GF, Skinner JL, Talin AA, Brocato RW, Palmer DW, Mancini DP, Dauksher WJ, Gehoski K, Le N, Nordquist KJ, Resnick DJ. J Vac Sci Technol B. 2004;22:3265.

    Article  CAS  Google Scholar 

  81. McClelland GM, Hart MW, Rettner CT, Best ME, Carter KR, Terri BD. Appl Phys Lett. 2002;81:1483.

    Article  CAS  Google Scholar 

  82. Ahn SW, Lee K-D, Kim JS, Kim SH, Lee SH, Park JD, Yoon PW. Microelectron Eng. 2005;78:314.

    Article  Google Scholar 

  83. Seekamp J, Zankovych S, Helfer AH, Maury P, Sotomayor Torres CM, Bottger G, Liguda C, Eich M, Heidari B, Montelius L, Ahopelto J. Nanotechnology. 2002;13:581.

    Article  CAS  Google Scholar 

  84. Ahn SW, Lee KD, Kim JS, Kim SH, Park JD, Lee SH, Yoon PW. Nanotechnology. 2005;16:1874.

    Article  CAS  Google Scholar 

  85. Kehagias N, Zankovych S, Goldschmidt A, Kian R, Zelsmann M, Sotomayor Torres CM, Pfeiffer K, Ahrens G, Gruetzner G. Superlattice Microst. 2004;36:201.

    Article  CAS  Google Scholar 

  86. Chao CY, Guo LJ. J Vac Sci Technol B. 2002;20:2862.

    Article  CAS  Google Scholar 

  87. Paloczi GT, Huang Y, Yariv A, Luo J, Jen AKY. Appl Phys Lett. 2004;85:1662.

    Article  CAS  Google Scholar 

  88. Peroz C, Galas JC, Shi J, Le Gratiet L, Chen Y. Appl Phys Lett. 2006;89:243109.

    Article  Google Scholar 

  89. Arango F, Christiansen MB, Gersborg-Hansen M, Kristensen A. Appl Phys Lett. 2007;91:223503.

    Article  Google Scholar 

  90. Reboud V, Kehagias N, Zelsmann M, Fink M, Reuther F, Gruetzner G, Torres CMS. Opt Express. 2007;15:7190.

    Article  CAS  Google Scholar 

  91. Belotti M, Torres J, Roy E, Pepin A, Chen Y, Gerace D, Andreani LC, Galli M. Microelectron Eng. 2006;83:1773.

    Article  CAS  Google Scholar 

  92. Tamborra M, Striccoli M, Curri ML, Alducin JA, Mecerreyes D, Pomposo JA, Kehagias N, Reboud V, Torres CMS, Agostian A. Small. 2007;3:822.

    Article  CAS  Google Scholar 

  93. Chao CY, Guo LJ. IEEE Photon Technol Lett. 2004;16:1498.

    Article  Google Scholar 

  94. Sotomayor Torres CM, Zankovych S, Seekamp J, Kam AP, Cedeno CC, Hoffmann T, Ahopelto J, Reuther F, Pfeiffer K, Bleidiessel G, Gruetzner G, Maximov MV, Heidari B. Mater Sci Eng C. 2003;23:23.

    Article  Google Scholar 

  95. Wang J, Sun X, Chen L, Chou SY. Appl Phys Lett. 1999;75:2767.

    Article  CAS  Google Scholar 

  96. Cheng X, Hong Y, Kanicki J, Guo LJ. J Vac Sci Technol B. 2002;20:2877.

    Article  CAS  Google Scholar 

  97. Cedeno CC, Seekamp J, Kam AP, Hoffmann T, Zankovych S, Torres CMS, Menozzi C, Cavallini M, Murgia M, Ruani G, Biscarini F, Behl M, Zentel R, Ahopelto J. Microelectron Eng. 2002;61:25.

    Article  Google Scholar 

  98. Reboud V, Lovera P, Kehagias N, Zelsmann M, Reuther F, Gruetzner G, Redmond G, Torres CMS. Appl Phys Lett. 2007;91:151101.

    Article  Google Scholar 

  99. Reboud V, Kehagias N, Zelsmann M, Striccoli M, Tamborra M, Curri ML, Agostiano A, Fink M, Reuther F, Gruetzner G, Sotomayor Torres CM. Appl Phys Lett. 2007;90:011114.

    Article  Google Scholar 

  100. Köck A, Gornik E, Hauser M, Beinstingl W. Appl Phys Lett. 1990;57:2327.

    Article  Google Scholar 

  101. Barnes WL. J Lightwave Technol. 1999;17:2170.

    Article  Google Scholar 

  102. Reboud V, Kehagias N, Striccoli M, Placido T, Panniello A, Curri ML, Zelsmann M, Reuther F, Gruetzner G, Sotomayor Torres CM. J Vac Sci Technol B. 2007;25:2642.

    Article  CAS  Google Scholar 

  103. Kehagias N, Reboud V, Sotomayor Torres CM, Sirotkin V, Svintsov A, Zaitsev S. Microelectron Eng. 2008;85:846.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank S. Dhuey and E. Wood from The Molecular Foundry at Lawrence Berkeley National Laboratory, D. Resnick from Molecular Imprints and G. Kreindl from EVG Group. The support of the EC-funded project NaPaNIL (Contract no. NMP 214249) is gratefully acknowledged. The content of this work is the sole responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Peroz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Peroz, C., Reboud, V., Torres, C.M.S. (2012). Nanoimprint Technologies. In: Stepanova, M., Dew, S. (eds) Nanofabrication. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0424-8_5

Download citation

Publish with us

Policies and ethics