Skip to main content

Chemical Mechanical Polish for Nanotechnology

  • Chapter
  • First Online:
Nanofabrication

Abstract

Chemical mechanical polish (CMP) is a process technology that was adapted from wafer polishing to IC fabrication and thereby enabled the semiconductor industry to extend optical lithography and invent novel approaches such as damascene interconnects. In this chapter, we discuss the fundamentals of CMP as well as applications of the technique to nanotechnology. These applications include established IC techniques such as damascene and dual damascene fabrication, and shallow trench isolation, and emerging processes such as gate-last technology. CMP has recently found broader applications within the nanotechnology community, and has been adapted to produce extremely smooth surfaces for materials, such as sapphire and gallium nitride, that are far beyond the usual scope of IC manufacture. It is also being explored as a fabrication technique for novel interconnect and memory materials, such as phase-change memory. This chapter examines the features of CMP that make it a fundamental top-down nanofabrication technique for such a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. “Interconnect” in The International Technology Roadmap for Semiconductors 2007 Edition and 2008 Update. http://www.itrs.net/. Accessed 28 Jan 2009.

  2. Li Y. Microelectronic applications of chemical mechanical planarization. Hoboken: Wiley; 2008. ISBN 9780471719199.

    Google Scholar 

  3. Bohr MT, Chau RS, Ghani T, Mistry K. IEEE Spectrum. 2007;44:29.

    Article  Google Scholar 

  4. After Horiba Group. http://www.horiba.com/us/en/scientific/products/particle-characterization/applications/cmp/. Accessed June 2011.

  5. Li Z, Lee H, Borucki L, Rogers C, Kikuma R, Rikita N, Nagasawa K, Philipossian A. J Electrochem Soc. 2006;153:G399.

    Article  CAS  Google Scholar 

  6. Beyer K. IBM MicroNews. 1999;5:4.

    Google Scholar 

  7. Chiodarelli N, Li Y, Cott D. Microelectron Eng. 2011;88:837.

    Article  CAS  Google Scholar 

  8. Gupta S, Kumar P, Chakkaravathi A. Appl Surf Sci. 2011;257:5837.

    Article  CAS  Google Scholar 

  9. Feng H-P, Yu B, Chen S. Electrochim Acta. 2011;56:3079.

    Article  CAS  Google Scholar 

  10. Philipossian A, Olsen S. Jpn J Appl Phys 1. 2003;42:6371.

    Article  CAS  Google Scholar 

  11. Higgs III CF, Ng SH, Borucki L, Yoon I, Danyluk S. J Electrochem Soc. 2005;152:G193.

    Article  CAS  Google Scholar 

  12. Mueller N, Rogers C, Manno VP, White R, Moinpour M. J Electrochem Soc. 2009;156:H908.

    Article  CAS  Google Scholar 

  13. Li Y. ICSICT Proc. 2004;1:508.

    Google Scholar 

  14. Lu Z, Lee S-H, Gorantla VRK, Babu SV, Matijevic E. J Mater Res. 2003;18:2323.

    Article  CAS  Google Scholar 

  15. Kawahashi N, Matijević E. J Colloid Interf Sci. 1991;143:103.

    Article  CAS  Google Scholar 

  16. Lin F, Cadien KC. Unpublished work, 2011.

    Google Scholar 

  17. Bielmann M, Mahajan U, Singh RK. Mater Res Soc Symp Proc. 2000;566:103.

    Article  CAS  Google Scholar 

  18. Luo J, Dornfeld DA. IEEE Trans Semicond Manuf. 2003;16:469.

    Article  Google Scholar 

  19. Jung S-H, Singh RK. Mater Res Soc Symp Proc. 2004;816:49.

    Article  CAS  Google Scholar 

  20. Li Z, Ina K, Lefevre P, Koshiyama I, Philipossian A. J Electrochem Soc. 2005;152:G299.

    Article  CAS  Google Scholar 

  21. Fu G, Chandra A, Guha S, Subhash G. IEEE Trans Semicond Manuf. 2001;14:406.

    Article  Google Scholar 

  22. Che W, Guo Y, Chandra A, Bastawros A. J Manuf Sci Eng Trans ASME. 2005;127:545.

    Article  Google Scholar 

  23. Cook LM. J Non-Cryst Solids. 1990;120:152.

    Article  CAS  Google Scholar 

  24. Iler RK. Chemistry of silica – solubility, polymerization, colloid and surface properties and biochemistry. New York: Wiley; 1979. ISBN 047102404X.

    Google Scholar 

  25. Aksu S. Mater Res Soc Symp Proc. 2005;867:15.

    CAS  Google Scholar 

  26. Perez N. Electrochemistry and corrosion science. Boston: Kluwer Academic Publishers; 2004. ISBN 1402077440.

    Book  Google Scholar 

  27. Carpio R, Farkas J, Jairath R. Thin Solid Films. 1995;266:238.

    Article  CAS  Google Scholar 

  28. Washburn EW. International critical tables of numerical data, physics, chemistry and technology. 1 Electronicth ed. Norwich: Knovel; 2003. ISBN 9781591244912.

    Google Scholar 

  29. Ein-Eli Y, Abelev E, Rabkin E, Starosvetsky D. J Electrochem Soc. 2003;150:C646.

    Article  CAS  Google Scholar 

  30. Wardman P, Candeias LP. Radiat Res. 1996;145:523.

    Article  CAS  Google Scholar 

  31. Janna H, Scrimshaw MD, Williams RJ, Churchley J, Sumpter JP. Environ Sci Technol. 2011;45:3858.

    CAS  Google Scholar 

  32. Tromans D. J Electrochem Soc. 1998;145:L42.

    Article  CAS  Google Scholar 

  33. Zheng JP, Roy D. Thin Solid Films. 2009;517:4587.

    Article  CAS  Google Scholar 

  34. Hong Y, Devarapalli VK, Roy D, Babu SV. J Electrochem Soc. 2007;154:H444.

    Article  CAS  Google Scholar 

  35. Hong Y, Patri UB, Ramakrishnan S, Roy D, Babu SV. J Mater Res. 2005;20:3413.

    Article  CAS  Google Scholar 

  36. Grover GS, Liang H, Ganeshkumar S, Fortino W. Wear. 1998;214:10.

    Article  CAS  Google Scholar 

  37. Philipossian A, Mitchell E. Jpn J Appl Phys 1: Reg Pap Short Notes Rev Pap. 2003;42:7259.

    Google Scholar 

  38. Nolan L, Cadien KC. Unpublished work, 2009.

    Google Scholar 

  39. Lu H, Fookes B, Obeng Y, Machinski S, Richardson KA. Mater Charact. 2002;49:35.

    Article  CAS  Google Scholar 

  40. Moinpour M, Tregub A, Oehler A, Cadien K. MRS Bull. 2002;27:766.

    Article  CAS  Google Scholar 

  41. Prasad YN, Kwon T-Y, Kim I-K, Kim I-G, Park J-G. J Electrochem Soc. 2011;158:394.

    Article  Google Scholar 

  42. Chen P-L, Chen J-H, Tsai M-S, Dai B-T, Yeh C-F. Microelectron Eng. 2004;75:352.

    Article  CAS  Google Scholar 

  43. Cooper K, Gupta A, Beaudoin S. J Electrochem Soc. 2001;148:G662.

    Article  CAS  Google Scholar 

  44. Xu K, Vos R, Vereecke G, Doumen G, Fyen W, Mertens PW, Heyns MM, Vinckier C, Fransaer J, Kovacs F. J Vac Sci Technol B. 2005;23:2160.

    Article  CAS  Google Scholar 

  45. Busnaina AA, Elsawy TM. J Electron Mater. 1998;27:1095.

    Article  CAS  Google Scholar 

  46. Renteln P, Ninh T. Mater Res Soc Symp Proc. 2000;566:155.

    Article  CAS  Google Scholar 

  47. Zhao B, Shi FG. Electrochem Solid-State Lett. 1999;2:145.

    Article  CAS  Google Scholar 

  48. Bastaninejad M, Ahmadi G. J Electrochem Soc. 2005;152:G720.

    Article  CAS  Google Scholar 

  49. Haosheng C, Jiang L, Darong C, Jiadao W. Tribol Lett. 2006;24:179.

    Article  Google Scholar 

  50. Xu G, Liang H, Zhao J, Li Y. J Electrochem Soc. 2004;151:G688.

    Article  CAS  Google Scholar 

  51. Liang-Yong W, Bo L, Zhi-Tang S, Wei-Li L, Song-Lin F, Huang D, Babu SV. Chin Phys B. 2011;20:038102.

    Article  Google Scholar 

  52. Oh M-H, Nho J-S, Cho S-B, Lee J-S, Singh RK. Powder Technol. 2011;206:239.

    Article  CAS  Google Scholar 

  53. Manivannan R, Victoria SN, Ramanathan S. Thin Solid Films. 2010;518:5737.

    Article  CAS  Google Scholar 

  54. Janjam SVS, Surisetty CVVS, Pandija S, Roy D, Babu SV. Electrochem Solid-State Lett. 2008;11:H66.

    Article  CAS  Google Scholar 

  55. Preston FW. J Soc Glass Technol. 1927;11:214.

    CAS  Google Scholar 

  56. Luo Q, Ramarajan S, Babu SV. Thin Solid Films. 1998;335:160.

    Article  CAS  Google Scholar 

  57. Wang C, Sherman P, Chandra A. IEEE Trans Semicond Manuf. 2005;18:695.

    Article  Google Scholar 

  58. Luo J, Dornfeld DA. IEEE Trans Semicond Manuf. 2001;14:112.

    Article  Google Scholar 

  59. Borucki L. J Eng Math. 2002;43:105.

    Article  CAS  Google Scholar 

  60. Yu T-K, Yu CC, Orlowski M. Technical Digest – International Electron Devices Meeting, 1993, p. 865.

    Google Scholar 

  61. Bastawros A, Chandra A, Guo Y, Yan B. J Electron Mater. 2002;31:1022.

    Article  CAS  Google Scholar 

  62. Seok J, Sukam CP, Kim AT, Tichy JA, Cale TS. Wear. 2003;254:307.

    Article  CAS  Google Scholar 

  63. Islam MS, Li Z, Chang S-C, Ohlberg DAA, Stewart DR, Wang SY, Williams RS. 5th IEEE international conference on nanotechnology 2005;1:80.

    Google Scholar 

  64. Xiong R, Chung JN. Microfluid Nanofluid. 2010;8:11.

    Article  Google Scholar 

  65. Zhong ZW, Wang ZF, Tan YH. Microelectron J. 2006;37:295.

    Article  CAS  Google Scholar 

  66. Barkley E, Fonstad Jr CG. IEEE J Quantum Electron. 2004;40:1709.

    Article  CAS  Google Scholar 

  67. Lee S-C, Oates AS, Chang K-M. IEEE Trans Dev Mater Reliab. 2010;10:307.

    Article  CAS  Google Scholar 

  68. Lei H, Luo J. Wear. 2004;257:461.

    Article  CAS  Google Scholar 

  69. Higgs CF, Terrell EJ, Kuo M, Bonivel J, Biltz S. Mater Res Soc Symp Proc. 2007;991:333.

    Article  CAS  Google Scholar 

  70. Saif Islam M, Jung GY, Ha T, Stewart DR, Chen Y, Wang SY, Williams RS. Appl Phys A. 2005;A80:1385–9.

    Article  Google Scholar 

  71. Logeeswaran VJ, Chan M-L, Bayam Y, Saif Islam M, Horsley DA, Li X, Wu W, Wang SY, Williams RS. Appl Phys A. 2007;A87:187.

    Article  Google Scholar 

  72. Lee W, Qi Z, Lu W. 12th IFToMM world congress, Besançon; 2007.

    Google Scholar 

  73. Zhang Z, Gao H, Jie W, Guo D, Kang R, Li Y. Semicond Sci Technol. 2008;23:105023.

    Article  Google Scholar 

  74. Zhou H. Mater Manuf Process. 2010;25:418.

    Article  CAS  Google Scholar 

  75. Xu X, Vaudo RP, Brandes GR. Opt Mater. 2003;23:1.

    Article  Google Scholar 

  76. Vangala SR, Qian X, Grzesik M, Santeufemio C, Goodhue WD, Allen LP, Dallas G, Dauplaise H, Vaccaro K, Wang SQ, Bliss D. J Vac Sci Technol B. 2006;24:1634.

    Article  CAS  Google Scholar 

  77. Zhang Z, Liu W, Song Z, Hu X. J Electrochem Soc. 2010;157:H688.

    Article  CAS  Google Scholar 

  78. Black JR. IEEE Int Reliab Phys Symp Proc. 2005;43:1.

    Google Scholar 

  79. Wolf S. Silicon processing for the VLSI era, vol. 4. Sunset Beach: Lattice Press; 2004. ISBN 096167217X.

    Google Scholar 

  80. Bondur JA, Pogge HB. United States Patent number 4,104,086, Method for forming isolated regions of silicon utilizing reactive ion etching, 1 Aug 1978.

    Google Scholar 

  81. Zhong M, Song ZT, Liu B, Wang LY, Feng SL. Electron Lett. 2008;44:322.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Nolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Nolan, L., Cadien, K. (2012). Chemical Mechanical Polish for Nanotechnology. In: Stepanova, M., Dew, S. (eds) Nanofabrication. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0424-8_10

Download citation

Publish with us

Policies and ethics