Advertisement

Closed-Loop Control of Brain Rhythms

  • Anne BeuterEmail author
  • Julien Modolo
Chapter

Abstract

“From the moment of conception until death rhythm is as much part of our structure as our bones and flesh” as B. S. Brown wrote in the foreword to the book on “Biological Rhythms in Human and Animal Physiology” by Gay Gaer Luce [36]. In this unique and highly detailed book, the author introduces the scope and influence of many external rhythms and shows that such rhythms underlie “most of what we assume to be constant in ourselves and in the world around us”. Rhythmic variations in body temperature, blood pressure, endurance, metabolic activity and hormone production driven by external variations in temperature, daylight, etc., are observed in humans as well as in animals and plants and at time scales ranging from the 24-h circadian cycle, over monthly rhythms to seasonal and yearly variations.

Keywords

Motor Cortex Deep Brain Stimulation Neural Field Cortical Column Brain Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The work presented here could not have been possible without the support of BIOSIM (2005-2010), contract N ∘ SHB-CT-2004-005137. The authors wish to thank Professor Erik Mosekilde, administrator of this network, for his constant support, encouragements and constructive suggestions during the five year project.

References

  1. 1.
    Abbott LF (1999) Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Res Bull 50:303–304PubMedCrossRefGoogle Scholar
  2. 2.
    Achard S, Salvador R, Whitcher B, Suckling J, Baltimore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72PubMedCrossRefGoogle Scholar
  3. 3.
    Atay FM (2006) Oscillator death in coupled functional differential equations near Hopf bifurcation. J Differ Equat 221:190–209CrossRefGoogle Scholar
  4. 4.
    Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512PubMedCrossRefGoogle Scholar
  5. 5.
    Beuter A, Vasilakos K (1995) Tremor: Is Parkinson’s disease a dynamical disease? Chaos 1995:35–42CrossRefGoogle Scholar
  6. 6.
    Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamus nucleus for bilateral Parkinson disease. Stereotact Funct Neurosurg 50:344–346CrossRefGoogle Scholar
  7. 7.
    Beurrier C, Bioulac B, Audin J, Hammond C (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85:1351–1356PubMedGoogle Scholar
  8. 8.
    Bota M, Hong-Wei D, Swanson, LW (2003) From gene networks to brain networks. Nat Neurosci 6:795–799PubMedCrossRefGoogle Scholar
  9. 9.
    Buzsaki G (2006) Rhythms of the Brain. Oxford University Press, Oxford, UKCrossRefGoogle Scholar
  10. 10.
    von Campenhausen S, Bornschein B, Wick R, Bötzel K, Sampaio C, Poewe W, Oertel W, Siebert U, Berger K, Dodel R (2005) Prevalence and incidence of Parkinson’s disease in Europe. Eur Neuropsychopharmacol 15:473–490CrossRefGoogle Scholar
  11. 11.
    Chang JY (2004) Brain stimulation for neurological and psychiatric disorders, current status and future direction. J Pharmacol Exp Ther 309:1–7PubMedCrossRefGoogle Scholar
  12. 12.
    Cziger B, Csikos D, Hidasi Z, Anna Gaal Z, Csibri E, Kiss E, Salacz P, Molnar M (2008) Quantitative EEG in early Alzheimer’s disease patients-power spectrum and complexity features. Int J Psychophysiol 68:75–90CrossRefGoogle Scholar
  13. 13.
    Desthexe A (1994) Stability of periodic oscillations in a network of neurons with time delay. Phys Lett A 187:309–316CrossRefGoogle Scholar
  14. 14.
    Elahi B, Elahi B, Chen R (2009) Effect of transcranial magnetic stimulation on Parkinson motor function-systematic review of controlled clinical trials. Mov Disord 24:357–363PubMedCrossRefGoogle Scholar
  15. 15.
    Eusebio A, Pogosyan A, Wang S, Averbeck B, Gaynor LD, Cantiniaux S, Witjas T, Limousin P, Azulay JP, Brown P (2009) Resonance in subthalamo-cortical circuits in Parkinson’s disease. Brain 132:2139–2150PubMedCrossRefGoogle Scholar
  16. 16.
    Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480PubMedCrossRefGoogle Scholar
  17. 17.
    Fries P (2009) Neuronal γ-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224PubMedCrossRefGoogle Scholar
  18. 18.
    Fuentealba P, Timofeev I, Bazhenov M, Sejnowski TJ, Steriade M (2005) Membrane bistability in thalamic reticular neurons during spindle oscillations. J Neurophysiol 93:294–304PubMedCrossRefGoogle Scholar
  19. 19.
    Gerard C, Goldbeter A (2009) Temporal selforganization of the cyclin/Cdk network driving the mammalian cell cycle. Proc Nat Acad Sci USA 106:21643–21648PubMedCrossRefGoogle Scholar
  20. 20.
    Gibbs FA, Gibbs EL, Lennox WG (1938) The likeliness of the cortical dysrhythmias of schizophrenia and psychomotor epilepsy. Am J Psychiatry 95:255–269Google Scholar
  21. 21.
    Goldberger AL (1999) In: Bolis CL, Licinio J (eds) The Autonomic Nervous System. World Health Organization, GenevaGoogle Scholar
  22. 22.
    Gray CM, Konig P, Engel AK, Singer W (1980) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337CrossRefGoogle Scholar
  23. 23.
    Hamada M, Ugawa Y, Tsuji S (2008) High-frequency rTMS over the supplementary motor area for treatment of Parkinson’s disease. Mov Disord 23:1524–1531PubMedCrossRefGoogle Scholar
  24. 24.
    Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544PubMedGoogle Scholar
  25. 25.
    Hurtado JM, Gray CM, Tamas LB, Sigvardt KA (1999) Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proc Natl Acad Sci USA 96:1674–1679PubMedCrossRefGoogle Scholar
  26. 26.
    Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23:216–222PubMedCrossRefGoogle Scholar
  27. 27.
    Hutt A, Atay FM (2005) Analysis of nonlocal neural fields for both general and gamma-distributed connectivities. Physica D 203(1-2):30–54CrossRefGoogle Scholar
  28. 28.
    Lapicque L (1907) Considérations préalables sur la nature du phénomène par lequel l’électricité excite les nerfs. J Physiol Pathol Génér 1907:565–578Google Scholar
  29. 29.
    Lenz FA, Kwan HC, Martin RL, Tasker RR, Dostrovsky YE, Lenz YE (1994) Single-unit analysis of the human ventral thalamic nuclear group. Tremor related activity in functionally identified cells. Brain 117:531–543Google Scholar
  30. 30.
    Levi F, Altinok A, Clairambault J, Goldbeter A (2008) Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Phil Trans Roy Soc A 366:3575–3598CrossRefGoogle Scholar
  31. 31.
    Levy R, Hutchison WD, Lozano AM, Dostrovsky JO (2000) High-frequency synchronization of neuronal activity in the subthalamic nucleus of Parkinsonian patients with limb tremor. J Neurosci 20:7766–7775PubMedGoogle Scholar
  32. 32.
    Lipsitz LA, Goldberger AL (1992) Loss of “complexity” and aging: potential applications of fractals and chaos theory to senescence. JAMA 267:1806–1809PubMedCrossRefGoogle Scholar
  33. 33.
    de la Prida LM (2009) Oscillations and brain function: setting the neuronal tempo in health and disease. In Meeting of the Society for Neuroscience, ChicagoGoogle Scholar
  34. 34.
    Llinas RR (2007) Review of Gyorgy Buzsaki’s book rhythms of the brain. Neuroscience 149:726–727CrossRefGoogle Scholar
  35. 35.
    Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA 96:15222–15227PubMedCrossRefGoogle Scholar
  36. 36.
    Luce GG (1970) Biological Rhythms in Human and Animal Physiology. Dover Publications, New YorkGoogle Scholar
  37. 37.
    Mackey MC, Glass L (1977) Oscillations and chaos in physiological control systems. Science 197:287–289PubMedCrossRefGoogle Scholar
  38. 38.
    Mackey MC, Milton JG (1987) Dynamical diseases. Ann New York Acad Sci 504:16–32CrossRefGoogle Scholar
  39. 39.
    McAuley JH, Marsden CD (2000) Physiological and pathological tremors and rhythmic central motor control. Brain 123:1545–1567PubMedCrossRefGoogle Scholar
  40. 40.
    Milton J, Black D (1995) Dynamic diseases in neurology and psychiatry. Chaos 1995:8–13CrossRefGoogle Scholar
  41. 41.
    Miocinovic S, Parent M, Butson CR, Hahn PJ, Russo GS, Vitek JL, McIntyre CC (2006) Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. J Neurophysiol 96:1569–1580PubMedCrossRefGoogle Scholar
  42. 42.
    Modolo J, Henry J, Beuter A (2008a) Dynamics of the subthalamo-pallidal complex during deep brain stimulation in Parkinson’s disease. J Biol Phys 34:351–366CrossRefGoogle Scholar
  43. 43.
    Modolo J, Beuter A (2008b) Impact of cortical input on subthalamic activity during deep brain stimulation. Proceedings of the NeuroComp 2008 conference, Marseille, FranceGoogle Scholar
  44. 44.
    Modolo J, Bhattacharya B, Edwards R, Campagnaud J, Legros A, Beuter A (2010) Modulating brain rhythms in Parkinson’s disease using a neural field model. Front Neuroprosth 4:45Google Scholar
  45. 45.
    Modolo J, Beuter A (2009) Linking brain dynamics, neural mechanisms and deep brain stimulation in Parkinson’s disease: an integrated perspective. Med Eng Phys 31:615–623PubMedCrossRefGoogle Scholar
  46. 46.
    Modolo J, Beuter A, Cates J, Jog M, Buhran A, Prato FS, Thomas AW, Legros A (2011a) Bidirectional coupling between motor cortex and muscle activity in rest tremor in Parkinson’s disease. 4th International Conference of Parkinson’s Disease and Movement Disorders, Toronto, June 5–9, 2011Google Scholar
  47. 47.
    Modolo J, Legros A, Thomas AW, Beuter A (2011b) Modelling-driven therapeutic treatment of neurological disorders: reshaping brain rhythms with neuromodulation. Interface Focus 1:61–74PubMedCrossRefGoogle Scholar
  48. 48.
    Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG, 2nd edn. Oxford University Press, New YorkCrossRefGoogle Scholar
  49. 49.
    Plenz D, Kitai S (1999) A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400:677–682PubMedCrossRefGoogle Scholar
  50. 50.
    Polonksy KS, Given BD, van Cauter E (1988) Twenty-four-hour profiles and pulsatile patterns in insulin secretion in normal and obese subjects. J Clin Invest 81:442–448CrossRefGoogle Scholar
  51. 51.
    Popovych OV, Hauptmann C, Tass PA (2005) Effective desynchronization by nonlinear delayed feedback. Phys Rev Lett 94:164102PubMedCrossRefGoogle Scholar
  52. 52.
    Siegelmann HT (2010) Complex system science and brain dynamics. Front Comput Neurosci 4:1–2CrossRefGoogle Scholar
  53. 53.
    Shadlen MN, Movshon JA (1999) Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24:67–77PubMedCrossRefGoogle Scholar
  54. 54.
    Raethjen J, Govindan RB, Muthuraman M, Kopper F, Volkmann J, Deuschl G (2009) Cortical correlates of the basic and first harmonic frequency of Parkinsonian tremor. Clin Neurophysiol 120:1866–1867PubMedCrossRefGoogle Scholar
  55. 55.
    Reimann HA (1963) Periodic Diseases. F.A. Davis Company, PhiladelphiaGoogle Scholar
  56. 56.
    Rubin JE, Terman D (2004) High frequency of the subthalamic nucleus eliminates pathological rhythmicity in a computational model. J Comput Neurosci 16:211–235PubMedCrossRefGoogle Scholar
  57. 57.
    Rodriguez-Oroz MC, Rodriguez M, Guridi J, Mewes K, Chockmann V, Vitek J, DeLong MR, Obeso JA (2001) The subthalamic nucleus in Parkinson’s disease: somatotopic organization and physiological characteristics. Brain 124:1777–1790PubMedCrossRefGoogle Scholar
  58. 58.
    Roman FS (2008) Editorial, J Integr Neuroscience 7(2): ix–xi.Google Scholar
  59. 59.
    Rosenblum MG, Pikovsky AS (2004) Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms. Phys Rev E 70:041904CrossRefGoogle Scholar
  60. 60.
    Rothwell JC, Bhatia K, Filipovic SR (2010) Slow (1Hz) repetitive transcranial magnetic stimulation (rTMS) induces a sustained change in cortical excitability in patients with Parkinson’s disease. Clin Neurophysiol 121:1129–1137PubMedCrossRefGoogle Scholar
  61. 61.
    Tass PA (1999) Phase Resetting in Medicine and Biology. Springer, Berlin, GermanyGoogle Scholar
  62. 62.
    Timmermann L, Gross J, Dirks M, Volkmann J, Freund HJ, Schnitzler A (2003) The cerebral oscillatory network of parkinsonian resting tremor. Brain 126:199–212PubMedCrossRefGoogle Scholar
  63. 63.
    Traub RT, Whittington M (2010) Cortical oscillations in health and disease. Oxford University Press, UKCrossRefGoogle Scholar
  64. 64.
    Thut G, Minussi C (2009) New insights into rhythmic brain activity from TMS-EEG studies. Trends Cognit Sci 13:182–189CrossRefGoogle Scholar
  65. 65.
    Usrey WM, Reid RC (1999) Synchronous activity in the visual system. Ann Rev Phys 61:435–456CrossRefGoogle Scholar
  66. 66.
    Varela F (1995) Resonant cell assemblies: a new approach to cognitive functions and neuronal synchrony. Biol Res 28:81–95PubMedGoogle Scholar
  67. 67.
    Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393:409–410CrossRefGoogle Scholar
  68. 68.
    Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13:55–80PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2011

Authors and Affiliations

  1. 1.Bordeaux Polytechnic InstituteUniversity of BordeauxPessacFrance
  2. 2.Lawson Health Research InstituteUniversity of Western OntarioLondonCanada

Personalised recommendations