Skip to main content

Abstract

The rapid progress in cell and developmental biology has clearly revealed that substrate elasticity and mechanical stimulation significantly affect cell function and tissue development. Further, many engineered soft-tissue constructs such as vascular grafts, cardiac patches, and cartilage are implanted in a mechanically dynamic environment, thus successful implants must sustain and recover from various deformations without mechanical irritations to surrounding tissues. Ideal scaffolds for these tissue engineering applications would be made of biodegradable elastomers with properties that resemble those of the extracellular matrix, providing a biomimetic mechanical environment and mechanical stimulation to cells and tissues. However, traditional biodegradable scaffold materials such as polylactide, polyglycolide, and poly(lactide-co-glycolide) are stiff and are subjected to plastic deformation and failure under cyclic strain. Consequently, for the past decade, many novel bioelastomers have been developed and extensively investigated for applications in tissue engineering. Both thermoplastic elastomers such as polyurethane, poly(ε-caprolactone) copolyester, poly(ether ester) and thermoset elastomers such as crosslinked polyesters have been developed and evaluated to engineer various tissues such as heart muscle and valves, blood vessels, skin, and cartilage. This chapter will cover representative bioelastomers and their applications in tissue engineering to highlight recent advances in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920–926.

    Article  CAS  Google Scholar 

  2. Freed LE, Engelmayr GC, Borenstein JT, Moutos FT, Guilak F. Advanced material strategies for tissue engineering scaffolds. Adv Mater 2009;21(32–33):3410–3418.

    Article  CAS  Google Scholar 

  3. Ghosh K, Ingber DE. Micromechanical control of cell and tissue development: implications for tissue engineering. Adv Drug Deliv Rev 2007;59(13):1306–1318.

    Article  CAS  Google Scholar 

  4. Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nat Mater 2009;8(1):15–23.

    Article  CAS  Google Scholar 

  5. Rehfeldt F, Engler AJ, Eckhardt A, Ahmed F, Diseher DE. Cell responses to the mechanochemical microenvironment – implications for regenerative medicine and drug delivery. Adv Drug Del Rev 2007;59(13):1329–1339.

    Article  CAS  Google Scholar 

  6. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science 2005;310(5751):1139–1143.

    Article  CAS  Google Scholar 

  7. Levental I, Georges PC, Janmey PA. Soft biological materials and their impact on cell function. Soft Matter 2007;3(3):299–306.

    Article  CAS  Google Scholar 

  8. Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate. Nature 2009;462(7272):433–441.

    Article  CAS  Google Scholar 

  9. Engler AJ, Griffin MA, Sen S, Bonnetnann CG, Sweeney HL, Discher DE. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 2004;166(6):877–887.

    Article  CAS  Google Scholar 

  10. Griffin MA, Sen S, Sweeney HL, Discher DE. Adhesion-contractile balance in myocyte differentiation. J Cell Sci 2004;117(Pt 24):5855–5863.

    Article  CAS  Google Scholar 

  11. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006;126(4):677–689.

    Article  CAS  Google Scholar 

  12. Reinhart-King CA, Dembo M, Hammer DA. Cell–cell mechanical communication through compliant substrates. Biophys J 2008;95(12):6044–6051.

    Article  CAS  Google Scholar 

  13. Amsden B. Curable, biodegradable elastomers: emerging biomaterials for drug delivery and tissue engineering. Soft Matter 2007;3(11):1335–1348.

    Article  CAS  Google Scholar 

  14. Chen QZ, Bismarck A, Hansen U, Junaid S, Tran MQ, Harding SE, Ali NN, Boccaccini AR. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials 2008;29(1):47–57.

    Article  CAS  Google Scholar 

  15. Gupta BS, Kasyanov VA. Biomechanics of human common carotid artery and design of novel hybrid textile compliant vascular grafts. J Biomed Mater Res 1997;34(3):341–349.

    Article  CAS  Google Scholar 

  16. Dahms SE, Piechota HJ, Dahiya R, Lue TF, Tanagho EA. Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human. Br J Urol 1998;82(3):411–419.

    Article  CAS  Google Scholar 

  17. Balguid A, Rubbens MP, Mol A, Bank RA, Bogers AJ, van Kats JP, de Mol BA, Baaijens FP, Bouten CV. The role of collagen cross-links in biomechanical behavior of human aortic heart valve leaflets – relevance for tissue engineering. Tissue Eng 2007;13(7):1501–1511.

    Article  CAS  Google Scholar 

  18. Lee JM, Boughner DR. Mechanical properties of human pericardium. Differences in viscoelastic response when compared with canine pericardium. Circ Res 1985;57(3):475–481.

    Article  CAS  Google Scholar 

  19. Monson KL, Goldsmith W, Barbaro NM, Manley GT. Axial mechanical properties of fresh human cerebral blood vessels. J Biomech Eng 2003;125(2):288–294.

    Article  Google Scholar 

  20. Yang SF, Leong KF, Du ZH, Chua CK. The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Eng 2001;7(6):679–689.

    Article  CAS  Google Scholar 

  21. Janmey PA, McCulloch CA. Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng 2007;9:1–34.

    Article  CAS  Google Scholar 

  22. Dado D, Levenberg S. Cell-scaffold mechanical interplay within engineered tissue. Semin Cell Dev Biol 2009;20(6):656–664.

    Article  CAS  Google Scholar 

  23. Bilodeau K, Mantovani D. Bioreactors for tissue engineering: focus on mechanical constraints. A comparative review. Tissue Eng 2006;12(8):2367–2383.

    Article  CAS  Google Scholar 

  24. Zimmermann WH, Cesnjevar R. Cardiac tissue engineering: implications for pediatric heart surgery. Pediatr Cardiol 2009;30(5):716–723.

    Article  Google Scholar 

  25. Hollister SJ. Scaffold design and manufacturing: from concept to clinic. Adv Mater 2009;21(32–33):3330–3342.

    Article  CAS  Google Scholar 

  26. Zimmermann WH. Tissue engineering polymers flex their muscles. Nat Mater 2008;7(12):932–933.

    Article  CAS  Google Scholar 

  27. Lavik E, Langer R. Tissue engineering: current state and perspectives. Appl Microbiol Biotechnol 2004;65(1):1–8.

    Article  CAS  Google Scholar 

  28. Chow D, Nunalee ML, Lim DW, Simnick AJ, Chilkoti A. Peptide-based biopolymers in biomedicine and biotechnology. Mater Sci Eng R Rep 2008;62(4):125–155.

    Article  CAS  Google Scholar 

  29. van Hest JCM, Tirrell DA. Protein-based materials, toward a new level of structural control. Chem Commun 2001;(19):1897–1904.

    Google Scholar 

  30. Daamen WF, Veerkamp JH, van Hest JCM, van Kuppevelt TH. Elastin as a biomaterial for tissue engineering. Biomaterials 2007;28(30):4378–4398.

    Article  CAS  Google Scholar 

  31. Martin DP, Williams SF. Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem Eng J 2003;16(2):97–105.

    Article  CAS  Google Scholar 

  32. Chen GQ, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 2005;26(33):6565–6578.

    Article  CAS  Google Scholar 

  33. Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Del Rev 2007;59(4–5):207–233.

    Article  CAS  Google Scholar 

  34. Drobny JG. Handbook of thermoplastic elastomers. Norwich, NY: PDL(Plastics Design Library)/William Andrew Pub., 2007.

    Google Scholar 

  35. Boretos JW, Pierce WS. Segmented polyurethane: a new elastomer for biomedical applications. Science 1967;158(807):1481–1482.

    Article  CAS  Google Scholar 

  36. Zdrahala RJ, Zdrahala IJ. Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J Biomater Appl 1999;14(1):67–90.

    CAS  Google Scholar 

  37. Burke A, Hasirci N. Polyurethanes in biomedical applications. Adv Exp Med Biol 2004;553:83–101.

    CAS  Google Scholar 

  38. Wagner H, Beller FK, Pfautsch M. Electron and light microscopy examination of capsules around breast implants. Plast Reconstr Surg 1977;60(1):49–55.

    Article  CAS  Google Scholar 

  39. Bucky LP, Ehrlich HP, Sohoni S, May JW, Jr. The capsule quality of saline-filled smooth silicone, textured silicone, and polyurethane implants in rabbits: a long-term study. Plast Reconstr Surg 1994;93(6):1123–1131; discussion 1132–1133.

    Article  CAS  Google Scholar 

  40. Slade CL, Peterson HD. Disappearance of the polyurethane cover of the Ashley Natural Y prosthesis. Plast Reconstr Surg 1982;70(3):379–383.

    Article  CAS  Google Scholar 

  41. Szycher M, Siciliano AA. An assessment of 2,4 TDA formation from Surgitek polyurethane foam under simulated physiological conditions. J Biomater Appl 1991;5(4):323–336.

    Article  CAS  Google Scholar 

  42. Guelcher SA. Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B Rev 2008;14(1):3–17.

    Article  CAS  Google Scholar 

  43. Santerre JP, Woodhouse K, Laroche G, Labow RS. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials 2005;26(35):7457–7470.

    Article  CAS  Google Scholar 

  44. Guan JJ, Sacks MS, Beckman EJ, Wagner WR. Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility. Biomaterials 2004;25(1):85–96.

    Article  CAS  Google Scholar 

  45. Sung CSP, Smith TW, Sung NH. Properties of segmented polyether poly(urethaneureas) based on 2,4-toluene diisocyanate. 2. Infrared and mechanical studies. Macromolecules 1980;13(1):117–121.

    Article  CAS  Google Scholar 

  46. Wang CB, Cooper SL. Morphology and properties of segmented polyether polyurethaneureas. Macromolecules 1983;16(5):775–786.

    Article  CAS  Google Scholar 

  47. Guan JJ, Sacks MS, Beckman EJ, Wagner WR. Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine. J Biomed Mater Res 2002;61(3):493–503.

    Article  CAS  Google Scholar 

  48. Stankus JJ, Guan JJ, Wagner WR. Fabrication of biodegradable elastomeric scaffolds with sub-micron morphologies. J Biomed Mater Res A 2004;70A(4):603–614.

    Article  CAS  Google Scholar 

  49. Stankus JJ, Freytes DO, Badylak SF, Wagner WR. Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix. J Biomater Sci Polym Ed 2008;19(5):635–652.

    Article  CAS  Google Scholar 

  50. Guan JJ, Fujimoto KL, Sacks MS, Wagner WR. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials 2005;26(18):3961–3971.

    Article  CAS  Google Scholar 

  51. Guan JJ, Wagner WR. Synthesis, characterization and cytocompatibility of polyurethaneurea elastomers with designed elastase sensitivity. Biomacromolecules 2005;6(5):2833–2842.

    Article  CAS  Google Scholar 

  52. Courtney T, Sacks MS, Stankus J, Guan J, Wagner WR. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 2006;27(19):3631–3638.

    CAS  Google Scholar 

  53. Stankus JJ, Guan JJ, Fujimoto K, Wagner WR. Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials 2006;27(5):735–744.

    Article  CAS  Google Scholar 

  54. Guan J, Stankus JJ, Wagner WR. Biodegradable elastomeric scaffolds with basic fibroblast growth factor release. J Control Release 2007;120(1–2):70–78.

    Article  CAS  Google Scholar 

  55. Guan J, Fujimoto KL, Wagner WR. Elastase-sensitive elastomeric scaffolds with variable anisotropy for soft tissue engineering. Pharm Res 2008;25(10):2400–2412.

    Article  CAS  Google Scholar 

  56. Wang F, Li ZQ, Tamama K, Sen CK, Guan JJ. Fabrication and characterization of prosurvival growth factor releasing, anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation. Biomacromolecules 2009;10(9):2609–2618.

    Article  CAS  Google Scholar 

  57. Wang F, Li ZQ, Lannutti JL, Wagner WR, Guan JJ. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering. Acta Biomater 2009;5(8):2901–2912.

    Article  CAS  Google Scholar 

  58. Hong Y, Ye SH, Nieponice A, Soletti L, Vorp DA, Wagner WR. A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend. Biomaterials 2009;30(13):2457–2467.

    Article  CAS  Google Scholar 

  59. Fujimoto KL, Guan JJ, Oshima H, Sakai T, Wagner WR. In vivo evaluation of a porous, elastic, biodegradable patch for reconstructive cardiac procedures. Ann Thorac Surg 2007;83(2):648–654.

    Article  Google Scholar 

  60. Fujimoto KL, Tobita K, Merryman WD, Guan JJ, Momoi N, Stolz DB, Sacks MS, Keller BB, Wagner WR. An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J Am Coll Cardiol 2007;49(23):2292–2300.

    Article  CAS  Google Scholar 

  61. Nieponice A, Soletti L, Guan JJ, Deasy BM, Huard J, Wagner WR, Vorp DA. Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique. Biomaterials 2008;29(7):825–833.

    Article  CAS  Google Scholar 

  62. Skarja GA, Woodhouse KA. Structure-property relationships of degradable polyurethane elastomers containing an amino acid-based chain extender. J Appl Polym Sci 2000;75(12):1522–1534.

    Article  CAS  Google Scholar 

  63. Skarja GA, Woodhouse KA. In vitro degradation and erosion of degradable, segmented polyurethanes containing an amino acid-based chain extender. J Biomater Sci Polym Ed 2001;12(8):851–873.

    Article  CAS  Google Scholar 

  64. Fromstein JD, Woodhouse KA. Elastomeric biodegradable polyurethane blends for soft tissue applications. J Biomater Sci Polym Ed 2002;13(4):391–406.

    Article  CAS  Google Scholar 

  65. Alperin C, Zandstra PW, Woodhouse KA. Polyurethane films seeded with embryonic stem cell-derived cardiomyocytes for use in cardiac tissue engineering applications. Biomaterials 2005;26(35):7377–7386.

    Article  CAS  Google Scholar 

  66. Fromstein JD, Zandstra PW, Alperin C, Rockwood D, Rabolt JF, Woodhouse KA. Seeding bioreactor-produced embryonic stem cell-derived cardiomyocytes on different porous, degradable, polyurethane scaffolds reveals the effect of scaffold architecture on cell morphology. Tissue Eng Part A 2008;14(3):369–378.

    Article  CAS  Google Scholar 

  67. McDevitt TC, Woodhouse KA, Hauschka SD, Murry CE, Stayton PS. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res A 2003;66A(3):586–595.

    Article  CAS  Google Scholar 

  68. Rockwood DN, Akins RE, Parrag IC, Woodhouse KA, Rabolt JF. Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro. Biomaterials 2008;29(36):4783–4791.

    Article  CAS  Google Scholar 

  69. Rockwood DN, Woodhouse KA, Fromstein JD, Chase DB, Rabolt JF. Characterization of biodegradable polyurethane microfibers for tissue engineering. J Biomater Sci Polym Ed 2007;18(6):743–758.

    Article  CAS  Google Scholar 

  70. Tatai L, Moore TG, Adhikari R, Malherbe F, Jayasekara R, Griffiths I, Gunatillake PA. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Biomaterials 2007;28(36):5407–5417.

    Article  CAS  Google Scholar 

  71. Ding MM, Li JH, Fu XT, Zhou J, Tan H, Gu Q, Fu Q. Synthesis, degradation, and cytotoxicity of multiblock poly(epsilon-caprolactone urethane)s containing Gemini quaternary ammonium cationic groups. Biomacromolecules 2009;10(10):2857–2865.

    Article  CAS  Google Scholar 

  72. Sarkar D, Lopina ST. Oxidative and enzymatic degradations of L-tyrosine based polyurethanes. Polym Degrad Stab 2007;92(11):1994–2004.

    Article  CAS  Google Scholar 

  73. Xu W, Wang XH, Yan YN, Zhang RJ. Rapid prototyping of polyurethane for the creation of vascular systems. J Bioact Compat Polym 2008;23(2):103–114.

    Article  CAS  Google Scholar 

  74. Chia SL, Gorna K, Gogolewski S, Alini M. Biodegradable elastomeric polyurethane membranes as chondrocyte carriers for cartilage repair. Tissue Eng 2006;12(7):1945–1953.

    Article  CAS  Google Scholar 

  75. Zhang L, Zhou JY, Lu QP, Wei YJ, Hu SS. A novel small-diameter vascular graft: in vivo behavior of biodegradable three-layered tubular scaffolds. Biotechnol Bioeng 2008;99(4):1007–1015.

    Article  CAS  Google Scholar 

  76. Laschke MW, Strohe A, Scheuer C, Eglin D, Verrier S, Alini M, Pohlemann T, Menger MD. In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering. Acta Biomater 2009;5(6):1991–2001.

    Article  CAS  Google Scholar 

  77. Gisselfalt K, Edberg B, Flodin P. Synthesis and properties of degradable poly(urethane urea)s to be used for ligament reconstructions. Biomacromolecules 2002;3(5):951–958.

    Article  CAS  Google Scholar 

  78. Liljensten E, Gisselfalt K, Edberg B, Bertilsson H, Flodin P, Nilsson A, Lindahl A, Peterson L. Studies of polyurethane urea bands for ACL reconstruction. J Mater Sci Mater Med 2002;13(4):351–359.

    Article  CAS  Google Scholar 

  79. Zhang CH, Zhang N, Wen XJ. Improving the elasticity and cytophilicity of biodegradable polyurethane by changing chain extender. J Biomed Mater Res B Appl Biomater 2006;79B(2):335–344.

    Article  CAS  Google Scholar 

  80. Siepe M, Giraud MN, Liljensten E, Nydegger U, Menasche P, Carrel T, Tevaearai HT. Construction of skeletal myoblast-based polyurethane scaffolds for myocardial repair. Artif Organs 2007;31(6):425-433.

    Article  CAS  Google Scholar 

  81. Siepe M, Giraud MN, Pavlovic M, Receputo C, Beyersdorf F, Menasche P, Carrel T, Tevaearai HT. Myoblast-seeded biodegradable scaffolds to prevent post-myocardial infarction evolution toward heart failure. J Thorac Cardiovasc Surg 2006;132(1):124–131.

    Article  Google Scholar 

  82. Soletti L, Nieponice A, Guan JJ, Stankus JJ, Wagner WR, Vorp DA. A seeding device for tissue engineered tubular structures. Biomaterials 2006;27(28):4863–4870.

    Article  CAS  Google Scholar 

  83. Zhang JY, Beckman EJ, Hu J, Yang GG, Agarwal S, Hollinger JO. Synthesis, biodegradability, and biocompatibility of lysine diisocyanate-glucose polymers. Tissue Eng 2002;8(5):771–785.

    Article  CAS  Google Scholar 

  84. Li B, Davidson JM, Guelcher SA. The effect of the local delivery of platelet-derived growth factor from reactive two-component polyurethane scaffolds on the healing in rat skin excisional wounds. Biomaterials 2009;30(20):3486–3494.

    Article  CAS  Google Scholar 

  85. Sharifpoor S, Labow RS, Santerre JP. Synthesis and characterization of degradable polar hydrophobic ionic polyurethane scaffolds for vascular tissue engineering applications. Biomacromolecules 2009;10(10):2729–2739.

    Article  CAS  Google Scholar 

  86. Hollinger JO. Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA). J Biomed Mater Res 1983;17(1):71–82.

    Article  CAS  Google Scholar 

  87. Pitt CG, Gratzl MM, Kimmel GL, Surles J, Schindler A. Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (epsilon-caprolactone), and their copolymers in vivo. Biomaterials 1981;2(4):215–220.

    Article  CAS  Google Scholar 

  88. Barrett DG, Yousaf MN. Design and Applications of biodegradable polyester tissue scaffolds based on endogenous monomers found in human metabolism. Molecules 2009;14(10):4022–4050.

    Article  CAS  Google Scholar 

  89. Lee SH, Kim BS, Kim SH, Choi SW, Jeong SI, Kwon IK, Kang SW, Nikolovski J, Mooney DJ, Han YK, Kim YH. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. J Biomed Mater Res A 2003;66A(1):29–37.

    Article  CAS  Google Scholar 

  90. Jeong SI, Kim SH, Kim YH, Jung Y, Kwon JH, Kim BS, Lee YM. Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. J Biomater Sci Polym Ed 2004;15(5):645–660.

    Article  CAS  Google Scholar 

  91. Jeong SI, Kim BS, Kang SW, Kwon JH, Lee YM, Kim SH, Kim YH. In vivo biocompatibilty and degradation behavior of elastic poly(L-lactide-co-epsilon-caprolactone) scaffolds. Biomaterials 2004;25(28):5939–5946.

    Article  CAS  Google Scholar 

  92. Jeong SI, Kwon JH, Lim JI, Cho SW, Jung YM, Sung WJ, Kim SH, Kim YH, Lee YM, Kim BS, Choi CY, Kim SJ. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Biomaterials 2005;26(12):1405–1411.

    Article  CAS  Google Scholar 

  93. Kim SH, Kwon JH, Chung MS, Chung E, Jung Y, Kim SH, Kim YH. Fabrication of a new tubular fibrous PLCL scaffold for vascular tissue engineering. J Biomater Sci Polym Ed 2006;17(12):1359–1374.

    Article  CAS  Google Scholar 

  94. He W, Ma ZW, Yong T, Teo WE, Ramakrishna S. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 2005;26(36):7606–7615.

    Article  CAS  Google Scholar 

  95. Burks CA, Bundy K, Fotuhi P, Alt E. Characterization of 75 : 25 poly(l-lactide-co-epsilon-caprolactone) thin films for the endoluminal delivery of adipose-derived stem cells to abdominal aortic aneurysms. Tissue Eng 2006;12(9):2591–2600.

    Article  CAS  Google Scholar 

  96. Matsumura G, Hibino N, Ikada Y, Kurosawa H, Shin’oka T. Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials 2003;24(13):2303–2308.

    Article  CAS  Google Scholar 

  97. Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, Sakamoto T, Nagatsu M, Kurosawa H. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 2005;129(6):1330–1338.

    Article  Google Scholar 

  98. Xie J, Ihara M, Jung Y, Kwon IK, Kim SH, Kim YH, Matsuda T. Mechano-active scaffold design based on microporous poly(L-lactide-co-epsilon-caprolactone) for articular cartilage tissue engineering: dependence of porosity on compression force-applied mechanical behaviors. Tissue Eng 2006;12(3):449–458.

    Article  CAS  Google Scholar 

  99. Deschamps AA, Grijpma DW, Feijen J. Poly(ethylene oxide)/poly(butylene terephthalate) segmented block copolymers: the effect of copolymer composition on physical properties and degradation behavior. Polymer 2001;42(23):9335–9345.

    Article  CAS  Google Scholar 

  100. Deschamps AA, van Apeldoorn AA, Hayen H, de Bruijn JD, Karst U, Grijpma DW, Feijen J. In vivo and in vitro degradation of poly(ether ester) block copolymers based on poly(ethylene glycol) and poly(butylene terephthalate). Biomaterials 2004;25(2):247–258.

    Article  CAS  Google Scholar 

  101. Lamme EN, Druecke D, Pieper J, May PS, Kaim P, Jacobsen F, Steinau HU, Steinstraesser L. Long-term evaluation of porous PEGT/PBT implants for soft tissue augmentation. J Biomater Appl 2008;22(4):309–335.

    Article  CAS  Google Scholar 

  102. Shi R, Chen DF, Liu QY, Wu Y, Xu XC, Zhang LQ, Tian W. Recent advances in synthetic bioelastomers. Int J Mol Sci 2009;10(10):4223–4256.

    Article  CAS  Google Scholar 

  103. Xiao YL, Riesle J, Van Blitterswijk CA. Static and dynamic fibroblast seeding and cultivation in porous PEO/PBT scaffolds. J Mater Sci Mater Med 1999;10(12):773–777.

    Article  CAS  Google Scholar 

  104. van Dorp AGM, Verhoeven MCH, Koerten HK, van Blitterswijk CA, Ponec M. Bilayered biodegradable poly(ethylene glycol)/poly(butylene terephthalate) copolymer (polyactive (TM)) as substrate for human fibroblasts and keratinocytes. J Biomed Mater Res 1999;47(3):292–300.

    Article  Google Scholar 

  105. Malda J, Woodfield TBF, van der Vloodt F, Wilson C, Martens DE, Tramper J, van Blitterswijk CA, Riesle J. The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials 2005;26(1):63–72.

    Article  CAS  Google Scholar 

  106. Jansen EJP, Pieper J, Gijbels MJJ, Guldemond NA, Riesle J, Van Rhijn LW, Bulstra SK, Kuijer R. PEOT/PBT based scaffolds with low mechanical properties improve cartilage repair tissue formation in osteochondral defects. J Biomed Mater Res A 2009;89A(2):444–452.

    Article  CAS  Google Scholar 

  107. Pego AP, Grijpma DW, Feijen J. Enhanced mechanical properties of 1,3-trimethylene carbonate polymers and networks. Polymer 2003;44(21):6495–6504.

    Article  CAS  Google Scholar 

  108. Pego AP, Poot AA, Grijpma DW, Feijen J. Copolymers of trimethylene carbonate and epsilon-caprolactone for porous nerve guides: synthesis and properties. J Biomater Sci Polym Ed 2001;12(1):35–53.

    Article  CAS  Google Scholar 

  109. Pego AP, Poot AA, Grijpma DW, Feijen J. Physical properties of high molecular weight 1,3-trimethylene carbonate and D,L-lactide copolymers. J Mater Sci Mater Med 2003;14(9):767–773.

    Article  CAS  Google Scholar 

  110. Pego AP, Van Luyn MJA, Brouwer LA, van Wachem PB, Poot AA, Grijpma DW, Feijen J. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: degradation and tissue response. J Biomed Mater Res A 2003;67A(3):1044–1054.

    Article  CAS  Google Scholar 

  111. Zhang Z, Kuijer R, Bulstra SK, Grijpma DW, Feijen J. The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials 2006;27(9):1741–1748.

    Article  CAS  Google Scholar 

  112. Edlund U, Albertsson AC. Polyesters based on diacid monomers. Adv Drug Deliv Rev 2003;55(4):585–609.

    Article  CAS  Google Scholar 

  113. Lips PAM, van Luyn MJA, Chiellini F, Brouwer LA, Velthoen IW, Dijkstra PJ, Feijen J. Biocompatibility and degradation of aliphatic segmented poly(ester amide)s: in vitro and in vivo evaluation. J Biomed Mater Res A 2006;76A(4):699–710.

    Article  CAS  Google Scholar 

  114. Deschamps AA, van Apeldoorn AA, de Bruijn JD, Grijpma DW, Feijen J. Poly(ether ester amide)s for tissue engineering. Biomaterials 2003;24(15):2643–2652.

    Article  CAS  Google Scholar 

  115. Wang YD, Ameer GA, Sheppard BJ, Langer R. A tough biodegradable elastomer. Nat Biotechnol 2002;20(6):602–606.

    Article  CAS  Google Scholar 

  116. Lee MC, Haut RC. Strain rate effects on tensile failure properties of the common carotid-artery and jugular vein of ferrets. J Biomech 1992;25(8):925–927.

    Article  CAS  Google Scholar 

  117. Wang YD, Kim YM, Langer R. In vivo degradation characteristics of poly(glycerol sebacate). J Biomed Mater Res A 2003;66A(1):192–197.

    Article  CAS  Google Scholar 

  118. Liu QY, Tian M, Shi R, Zhang LQ, Chen DF, Tian W. Structure and properties of thermoplastic poly(glycerol sebacate) elastomers originating from prepolymers with different molecular weights. J Appl Polym Sci 2007;104(2):1131–1137.

    Article  CAS  Google Scholar 

  119. Liu QY, Tian M, Ding T, Shi R, Zhang LQ. Preparation and characterization of a biodegradable polyester elastomer with thermal processing abilities. J Appl Polym Sci 2005;98(5):2033–2041.

    Article  CAS  Google Scholar 

  120. Pomerantseva I, Krebs N, Hart A, Neville CM, Huang AY, Sundback CA. Degradation behavior of poly(glycerol sebacate). J Biomed Mater Res A 2009;91A(4):1038–1047.

    Article  CAS  Google Scholar 

  121. Sun ZJ, Chen C, Sun MZ, Ai CH, Lu XL, Zheng YF, Yang BF, Dong DL. The application of poly (glycerol-sebacate) as biodegradable drug carrier. Biomaterials 2009;30(28):5209–5214.

    Article  CAS  Google Scholar 

  122. Pryor HI, O'Doherty E, Hart A, Owens G, Hoganson D, Vacanti JP, Masiakos PT, Sundback CA. Poly(glycerol sebacate) films prevent postoperative adhesions and allow laparoscopic placement. Surgery 2009;146(3):490–497.

    Article  Google Scholar 

  123. Fidkowski C, Kaazempur-Mofrad MR, Borenstein J, Vacanti JP, Langer R, Wang YD. Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng 2005;11(1–2):302–309.

    Article  CAS  Google Scholar 

  124. Bettinger CJ, Weinberg EJ, Kulig KM, Vacanti JP, Wang YD, Borenstein JT, Langer R. Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer. Adv Mater 2006;18(2):165–169.

    Article  CAS  Google Scholar 

  125. Bettinger CJ, Orrick B, Misra A, Langer R, Borenstein JT. Micro fabrication of poly (glycerol-sebacate) for contact guidance applications. Biomaterials 2006;27(12):2558–2565.

    Article  CAS  Google Scholar 

  126. Gao J, Crapo PM, Wang YD. Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. Tissue Eng 2006;12(4):917–925.

    Article  CAS  Google Scholar 

  127. Crapo PM, Gao J, Wang YD. Seamless tubular poly(glycerol sebacate) scaffolds: high-yield fabrication and potential applications. J Biomed Mater Res A 2008;86A(2):354–363.

    Article  CAS  Google Scholar 

  128. Yi F, Lavan DA. Poly(glycerol sebacate) nanofiber scaffolds by core/shell electrospinning. Macromol Biosci 2008;8(9):803–806.

    Article  CAS  Google Scholar 

  129. Gao J, Ensley AE, Nerem RM, Wang YD. Poly(glycerol sebacate) supports the proliferation and phenotypic protein expression of primary baboon vascular cells. J Biomed Mater Res A 2007;83A(4):1070–1075.

    Article  CAS  Google Scholar 

  130. Gao J, Crapo P, Nerern R, Wang YD. Co-expression of elastin and collagen leads to highly compliant engineered blood vessels. J Biomed Mater Res A 2008;85A(4):1120–1128.

    Article  CAS  Google Scholar 

  131. Crapo PM, Wang Y. Physiologic compliance in engineered small-diameter arterial constructs based on an elastomeric substrate. Biomaterials 2010;31(7):1626–1635.

    Article  CAS  Google Scholar 

  132. Radisic M, Park H, Chen F, Salazar-Lazzaro JE, Wang YD, Dennis R, Langer R, Freed LE, Vunjak-Novakovic G. Biomirnetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Eng 2006;12(8):2077–2091.

    Article  CAS  Google Scholar 

  133. Radisic M, Marsano A, Maidhof R, Wang Y, Vunjak-Novakovic G. Cardiac tissue engineering using perfusion bioreactor systems. Nat Protoc 2008;3(4):719–738.

    Article  CAS  Google Scholar 

  134. Radisic M, Park H, Martens TP, Salazar-Lazaro JE, Geng WL, Wang YD, Langer R, Freed LE, Vunjak-Novakovic G. Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. J Biomed Mater Res A 2008;86A(3):713–724.

    Article  CAS  Google Scholar 

  135. Engelmayr GC, Cheng MY, Bettinger CJ, Borenstein JT, Langer R, Freed LE. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater 2008;7(12):1003–1010.

    Article  CAS  Google Scholar 

  136. Sales VL, Engelmayr GC, Johnson JA, Gao J, Wang YD, Sacks MS, Mayer JE. Protein precoating of elastomeric tissue-engineering scaffolds increased cellularity, enhanced extracellular matrix protein production, and differentially regulated the phenotypes of circulating endothelial progenitor cells. Circulation 2007;116(11):I55–I63.

    Article  CAS  Google Scholar 

  137. Sundback CA, Shyu JY, Wang YD, Faquin WC, Langer RS, Vacanti JP, Hadlock TA. Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials 2005;26(27):5454–5464.

    Article  CAS  Google Scholar 

  138. Neeley WL, Redenti S, Klassen H, Tao S, Desai T, Young MJ, Langer R. A microfabricated scaffold for retinal progenitor cell grafting. Biomaterials 2008;29(4):418–426.

    Article  CAS  Google Scholar 

  139. Redenti S, Neeley WL, Rompani S, Saigal S, Yang J, Klassen H, Langer R, Young MJ. Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation. Biomaterials 2009;30(20):3405–3414.

    Article  CAS  Google Scholar 

  140. Nijst CLE, Bruggeman JP, Karp JM, Ferreira L, Zumbuehl A, Bettinger CJ, Langer R. Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromolecules 2007;8(10):3067–3073.

    Article  CAS  Google Scholar 

  141. Gerecht S, Townsend SA, Pressler H, Zhu H, Nijst CLE, Bruggeman JP, Nichol JW, Langer R. A porous photocurable elastomer for cell encapsulation and culture. Biomaterials 2007;28:4826–4835.

    Article  CAS  Google Scholar 

  142. Ifkovits JL, Devlin JJ, Eng G, Martens TP, Vunjak-Novakovic G, Burdick JA. Biodegradable fibrous scaffolds with tunable properties formed from photo-cross-linkable poly(glycerol sebacate). Acs ACS Appl Mater Interfaces 2009;1(9):1878–1886.

    Article  CAS  Google Scholar 

  143. Yang J, Webb AR, Ameer GA. Novel citric acid-based biodegradable elastomers for tissue engineering. Adv Mater 2004;16(6):511–516.

    Article  CAS  Google Scholar 

  144. Nijst CLE, Bruggeman JP, Karp JM, Ferreira L, Zumbuehl A, Bettinger CJ, Langer R. Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromolecules 2007;8:3067–3073.

    Article  CAS  Google Scholar 

  145. Bruggeman JP, Bettinger CJ, Nijst CLE, Kohane DS, Langer R. Biodegradable xylitol-based polymers. Adv Mater 2008;20(10):1922–1927.

    Article  CAS  Google Scholar 

  146. Bettinger CJ, Bruggeman JP, Borenstein JT, Langer RS. Amino alcohol-based degradable poly(ester amide) elastomers. Biomaterials 2008;29(15):2315–2325.

    Article  CAS  Google Scholar 

  147. Bruggeman JP, de Bruin BJ, Bettinger CJ, Langer R. Biodegradable poly(polyol sebacate) polymers. Biomaterials 2008;29(36):4726–4735.

    Article  CAS  Google Scholar 

  148. You Z, Cao H, Gao J, Shin PH, Day BW, Wang Y. A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties. Biomaterials 2010;31(12):3129–3138.

    Article  CAS  Google Scholar 

  149. Barrett DG, Yousaf MN. Poly(triol alpha-ketoglutarate) as biodegradable, chemoselective, and mechanically tunable elastomers. Macromolecules 2008;41(17):6347–6352.

    Article  CAS  Google Scholar 

  150. Dey J, Xu H, Shen JH, Thevenot P, Gondi SR, Nguyen KT, Sumerlin BS, Tang LP, Yang J. Development of biodegradable crosslinked urethane-doped polyester elastomers. Biomaterials 2008;29(35):4637–4649.

    Article  CAS  Google Scholar 

  151. Yang J, Webb AR, Pickerill SJ, Hageman G, Ameer GA. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Biomaterials 2006;27(9):1889–1898.

    Article  CAS  Google Scholar 

  152. Wan YQ, Feng G, Shen FH, Laurencin CT, Li XD. Biphasic scaffold for annulus fibrosus tissue regeneration. Biomaterials 2008;29(6):643–652.

    Article  CAS  Google Scholar 

  153. Sun ZJ, Wu L, Lu XL, Meng ZX, Zheng YF, Dong DL. The characterization of mechanical and surface properties of poly (glycerol-sebacate-lactic acid) during degradation in phosphate buffered saline. Appl Surf Sci 2008;255(2):350–352.

    Article  CAS  Google Scholar 

  154. Liu QY, Tan TW, Weng JY, Zhang LQ. Study on the control of the compositions and properties of a biodegradable polyester elastomer. Biomed Mater 2009;4(2):9.

    Google Scholar 

  155. Liu QY, Wu SZ, Tan TW, Weng JY, Zhang LQ, Liu L, Tian W, Chen DF. Preparation and properties of a novel biodegradable polyester elastomer with functional groups. J Biomater Sci Polym Ed 2009;20(11):1567–1578.

    Article  CAS  Google Scholar 

  156. Yang J, Motlagh D, Webb AR, Ameer GA. Novel biphasic elastomeric scaffold for small-diameter blood vessel tissue engineering. Tissue Eng 2005;11(11–12):1876–1886.

    Article  CAS  Google Scholar 

  157. Hidalgo-Bastida LA, Barry JJA, Everitt NM, Rose FRAJ, Buttery LD, Hall IP, Claycomb WC, Shakesheff KM. Cell adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering. Acta Biomater 2007;3(4):457–462.

    Article  CAS  Google Scholar 

  158. Kang Y, Yang J, Khan S, Anissian L, Ameer GA. A new biodegradable polyester elastomer for cartilage tissue engineering. J Biomed Mater Res A 2006;77A(2):331–339.

    Article  CAS  Google Scholar 

  159. Bettinger CJ, Kulig KM, Vacanti JP, Langer R, Borenstein JT. Nanofabricated collagen-inspired synthetic elastomers for primary rat hepatocyte culture. Tissue Eng Part A 2009;15(6):1321–1329.

    Article  CAS  Google Scholar 

  160. Sun ZJ, Wu L, Huang W, Zhang XL, Lu XL, Zheng YF, Yang BF, Dong DL. The influence of lactic on the properties of poly (glycerol-sebacate-lactic acid). Mater Sci Eng C Biomim Supramol Syst 2009;29(1):178–182.

    Article  CAS  Google Scholar 

  161. Ilagan BG, Amsden BG. Surface modifications of photocrosslinked biodegradable elastomers and their influence on smooth muscle cell adhesion and proliferation. Acta Biomater 2009;5(7):2429–2440.

    Article  CAS  Google Scholar 

  162. Amsden BG, Misra G, Gu F, Younes HM. Synthesis and characterization of a photo-cross-linked biodegradable elastomer. Biomacromolecules 2004;5(6):2479–2486.

    Article  CAS  Google Scholar 

  163. Amsden BG, Tse MY, Turner ND, Knight DK, Pang SC. In vivo degradation behavior of photo-cross-linked star-poly(epsilon-caprolactone-co-D,L-lactide) elastomers. Biomacromolecules 2006;7(1):365–372.

    Article  CAS  Google Scholar 

  164. Younes HM, Bravo-Grimaldo E, Amsden BG. Synthesis, characterization and in vitro degradation of a biodegradable elastomer. Biomaterials 2004;25(22):5261–5269.

    Article  CAS  Google Scholar 

  165. Butler DL, Goldstein SA, Guilak F. Functional tissue engineering: the role of biomechanics. J Biomech Eng 2000;122(6):570–575.

    Article  CAS  Google Scholar 

  166. Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng 1980;102(1):73–84.

    Article  CAS  Google Scholar 

  167. Huang CY, Stankiewicz A, Ateshian GA, Mow VC. Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation. J Biomech 2005;38(4):799–809.

    Article  Google Scholar 

  168. Ateshian GA, Warden WH, Kim JJ, Grelsamer RP, Mow VC. Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J Biomech 1997;30(11–12):1157–1164.

    Article  CAS  Google Scholar 

  169. Lai WM, Mow VC. Drag-induced compression of articular cartilage during a permeation experiment. Biorheology 1980;17(1–2):111–123.

    CAS  Google Scholar 

  170. Moutos FT, Guilak F. Composite scaffolds for cartilage tissue engineering. Biorheology 2008;45(3–4):501–512.

    Google Scholar 

  171. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005;23(1):47–55.

    Article  CAS  Google Scholar 

  172. Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater 2009;8(6):457–470.

    Article  CAS  Google Scholar 

  173. Mather PT, Luo XF, Rousseau IA. Shape memory polymer research. Annu Rev Mat Res 2009;39:445–471.

    Article  CAS  Google Scholar 

  174. Sokolowski W, Metcalfe A, Hayashi S, Yahia L, Raymond J. Medical applications of shape memory polymers. Biomed Mater 2007;2(1):S23–S27.

    Article  CAS  Google Scholar 

  175. Liu C, Qin H, Mather PT. Review of progress in shape-memory polymers. J Mater Chem 2007;17(16):1543–1558.

    Article  CAS  Google Scholar 

  176. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature 2004;428(6982):487–492.

    Article  CAS  Google Scholar 

  177. Zheng XT, Zhou SB, Yu XJ, Li XH, Feng B, Qu SX, Weng J. Effect of in vitro degradation of poly(D,L-lactide)/beta-tricalcium composite on its shape-memory properties. J Biomed Mater Res B Appl Biomater 2008;86B(1):170–180.

    Article  CAS  Google Scholar 

  178. Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008;451(7181):977–980.

    Article  CAS  Google Scholar 

  179. Greef TFA, Meijer EW. Materials science – supramolecular polymers. Nature 2008;453(7192):171–173.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

You, Z., Wang, Y. (2011). Bioelastomers in Tissue Engineering. In: Burdick, J.A., Mauck, R.L. (eds) Biomaterials for Tissue Engineering Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0385-2_4

Download citation

Publish with us

Policies and ethics