Skip to main content

Senescence

  • Chapter
  • First Online:
Melanoma Development
  • 895 Accesses

Abstract

Cellular senescence is a program initiated by many stress signals including aberrant activation of oncogenes, DNA damage, oxidative lesions and telomere attrition. Once engaged senescence irreversibly limits cellular proliferation and can potently prevent tumour formation in vivo. The precise mechanisms driving senescence are still not completely defined, although the pRb and p53 tumour suppressor pathways are critical effectors. Senescent cells also develop aberrant gene expression profiles and acquire pro-inflammatory behaviour that may contribute to organismal ageing and age-related diseases, including cancer. It is not yet clear whether the pro-ageing actions of senescent cells can be minimised in vivo, but the therapeutic potential of this stress-induced program may depend on establishing a new equilibrium that favours tumour suppressor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta JC, Gil J (2009) A role for CXCR2 in senescence, but what about in cancer? Cancer Res 69:2167–2170

    PubMed  CAS  Google Scholar 

  • Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, Fumagalli M, Da Costa M, Brown C, Popov N, Takatsu Y, Melamed J, d’Adda di Fagagna F, Bernard D, Hernando E, Gil J (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133:1006–1018

    PubMed  CAS  Google Scholar 

  • Adams PD (2007) Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene 397:84–93

    PubMed  CAS  Google Scholar 

  • Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC (1996) Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA 93:13742–13747

    PubMed  CAS  Google Scholar 

  • Alimonti A, Nardella C, Chen Z, Clohessy JG, Carracedo A, Trotman LC, Cheng K, Varmeh S, Kozma SC, Thomas G, Rosivatz E, Wosholski R, Cognetti F, Scher HI, Pandolfi PP (2010) A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J Clin Invest 120(3):681–693

    PubMed  CAS  Google Scholar 

  • Ancrile B, Lim KH, Counter CM (2007) Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev 21:1714–1719

    PubMed  CAS  Google Scholar 

  • Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A, Kumar R, Jenkins RB, de Groen PC, Roche P, van Deursen JM (2004) BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet 36:744–749

    PubMed  CAS  Google Scholar 

  • Banito A, Rashid ST, Acosta JC, Li S, Pereira CF, Geti I, Pinho S, Silva JC, Azuara V, Walsh M, Vallier L, Gil J (2009) Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev 23:2134–2139

    PubMed  CAS  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LV, Kolettas E, Niforou K, Zoumpourlis VC, Takaoka M, Nakagawa H, Tort F, Fugger K, Johansson F, Sehested M, Andersen CL, Dyrskjot L, Orntoft T, Lukas J, Kittas C, Helleday T, Halazonetis TD, Bartek J, Gorgoulis VG (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–637

    PubMed  CAS  Google Scholar 

  • Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22:4212–4222

    PubMed  CAS  Google Scholar 

  • Bennett DC (2003) Human melanocyte senescence and melanoma susceptibility genes. Oncogene 22:3063–3069

    PubMed  CAS  Google Scholar 

  • Bhaumik D, Scott GK, Schokrpur S, Patil CK, Orjalo AV, Rodier F, Lithgow GJ, Campisi J (2009) MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging 1:402–411

    PubMed  CAS  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dorken B, Jenuwein T, Schmitt CA (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–665

    PubMed  CAS  Google Scholar 

  • Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277:831–834

    PubMed  CAS  Google Scholar 

  • Campaner S, Doni M, Hydbring P, Verrecchia A, Bianchi L, Sardella D, Schleker T, Perna D, Tronnersjo S, Murga M, Fernandez-Capetillo O, Barbacid M, Larsson LG, Amati B (2010) Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat Cell Biol 12(1):54–59, sup pp 1–14

    PubMed  CAS  Google Scholar 

  • Campisi J (2001) From cells to organisms: can we learn about aging from cells in culture? Exp Gerontol 36:607–618

    PubMed  CAS  Google Scholar 

  • Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

    PubMed  CAS  Google Scholar 

  • Carrieri G, Marzi E, Olivieri F, Marchegiani F, Cavallone L, Cardelli M, Giovagnetti S, Stecconi R, Molendini C, Trapassi C, De Benedictis G, Kletsas D, Franceschi C (2004) The G/C915 polymorphism of transforming growth factor beta1 is associated with human longevity: a study in Italian centenarians. Aging Cell 3:443–448

    PubMed  CAS  Google Scholar 

  • Chang E, Harley CB (1995) Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci USA 92:11190–11194

    PubMed  CAS  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, Cordon-Cardo C, Pandolfi PP (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730

    PubMed  CAS  Google Scholar 

  • Collado M, Serrano M (2005) The senescent side of tumor suppression. Cell Cycle 4:1722–1724

    PubMed  CAS  Google Scholar 

  • Collado M, Serrano M (2006) The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer 6:472–476

    PubMed  CAS  Google Scholar 

  • Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    PubMed  CAS  Google Scholar 

  • Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    PubMed  CAS  Google Scholar 

  • Cordisco S, Maurelli R, Bondanza S, Stefanini M, Zambruno G, Guerra L, Dellambra E (2010) Bmi-1 reduction plays a key role in physiological and premature aging of primary human ­keratinocytes. J Invest Dermatol 130:1048–1062

    PubMed  CAS  Google Scholar 

  • Cotter MA, Florell SR, Leachman SA, Grossman D (2007) Absence of senescence-associated beta-galactosidase activity in human melanocytic nevi in vivo. J Invest Dermatol 127:2469–2471

    PubMed  CAS  Google Scholar 

  • Cotter MA, Florell SR, Leachman SA, Grossman D (2008) Response to Gray-Schopfer et al. and Michaloglou et al. J Invest Dermatol 128:1583–1584

    CAS  Google Scholar 

  • Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM, Hollstein PE, MacCollin M, Cichowski K (2006) A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10:459–472

    PubMed  CAS  Google Scholar 

  • Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck JC (1998) Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci USA 95:10614–10619

    PubMed  CAS  Google Scholar 

  • d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    PubMed  Google Scholar 

  • Dai CY, Enders GH (2000) p16 INK4a can initiate an autonomous senescence program. Oncogene 19:1613–1622

    PubMed  CAS  Google Scholar 

  • Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE Jr, You MJ, Depinho RA, McMahon M, Bosenberg M (2009) Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 41(5):544–552

    PubMed  CAS  Google Scholar 

  • Davis T, Wyllie FS, Rokicki MJ, Bagley MC, Kipling D (2007) The role of cellular senescence in Werner syndrome: toward therapeutic intervention in human premature aging. Ann NY Acad Sci 1100:455–469

    PubMed  CAS  Google Scholar 

  • Deans AJ, Khanna KK, McNees CJ, Mercurio C, Heierhorst J, McArthur GA (2006) Cyclin-dependent kinase 2 functions in normal DNA repair and is a therapeutic target in BRCA1-deficient cancers. Cancer Res 66:8219–8226

    PubMed  CAS  Google Scholar 

  • Dekker P, Maier AB, van Heemst D, de Koning-Treurniet C, Blom J, Dirks RW, Tanke HJ, Westendorp RG (2009) Stress-induced responses of human skin fibroblasts in vitro reflect human longevity. Aging Cell 8:595–603

    PubMed  CAS  Google Scholar 

  • Demidenko ZN, Korotchkina LG, Gudkov AV, Blagosklonny MV (2010) Paradoxical suppression of cellular senescence by p53. Proc Natl Acad Sci USA 107:9660–9664

    PubMed  CAS  Google Scholar 

  • Denoyelle C, Abou-Rjaily G, Bezrookove V, Verhaegen M, Johnson TM, Fullen DR, Pointer JN, Gruber SB, Su LD, Nikiforov MA, Kaufman RJ, Bastian BC, Soengas MS (2006) Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol 8:1053–1063

    PubMed  CAS  Google Scholar 

  • Dhomen N, Reis-Filho JS, da Rocha DS, Hayward R, Savage K, Delmas V, Larue L, Pritchard C, Marais R (2009) Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15:294–303

    PubMed  CAS  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre M, Nuciforo PG, Bensimon A, Maestro R, Pelicci PG, d’Adda di Fagagna F (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–642

    PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    PubMed  CAS  Google Scholar 

  • Du J, Widlund HR, Horstmann MA, Ramaswamy S, Ross K, Huber WE, Nishimura EK, Golub TR, Fisher DE (2004) Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell 6:565–576

    PubMed  CAS  Google Scholar 

  • Dulic V, Beney GE, Frebourg G, Drullinger LF, Stein GH (2000) Uncoupling between phenotypic senescence and cell cycle arrest in aging p21-deficient fibroblasts. Mol Cell Biol 20:6741–6754

    PubMed  CAS  Google Scholar 

  • Dumble M, Gatza C, Tyner S, Venkatachalam S, Donehower LA (2004) Insights into aging obtained from p53 mutant mouse models. Ann NY Acad Sci 1019:171–177

    PubMed  CAS  Google Scholar 

  • Edwards MG, Anderson RM, Yuan M, Kendziorski CM, Weindruch R, Prolla TA (2007) Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program. BMC Genomics 8:80

    PubMed  Google Scholar 

  • Ershler WB, Keller ET (2000) Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med 51:245–270

    PubMed  CAS  Google Scholar 

  • Galluzzi L, Kepp O, Kroemer G (2010) TP53 and MTOR crosstalk to regulate cellular senescence. Aging 2(9):535–537

    PubMed  CAS  Google Scholar 

  • Garcia-Cao I, Garcia-Cao M, Martin-Caballero J, Criado LM, Klatt P, Flores JM, Weill JC, Blasco MA, Serrano M (2002) “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J 21:6225–6235

    PubMed  CAS  Google Scholar 

  • Garcia-Cao I, Garcia-Cao M, Tomas-Loba A, Martin-Caballero J, Flores JM, Klatt P, Blasco MA, Serrano M (2006) Increased p53 activity does not accelerate telomere-driven ageing. EMBO Rep 7:546–552

    PubMed  CAS  Google Scholar 

  • Goel VK, Ibrahim N, Jiang G, Singhal M, Fee S, Flotte T, Westmoreland S, Haluska FS, Hinds PW, Haluska FG (2009) Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene 28:2289–2298

    PubMed  CAS  Google Scholar 

  • Goldstein S, Moerman EJ, Fujii S, Sobel BE (1994) Overexpression of plasminogen activator inhibitor type-1 in senescent fibroblasts from normal subjects and those with Werner syndrome. J Cell Physiol 161:571–579

    PubMed  CAS  Google Scholar 

  • Goldstein AM, Chan M, Harland M, Gillanders EM, Hayward NK, Avril MF, Azizi E, Bianchi-Scarra G, Bishop DT, Bressac-de Paillerets B, Bruno W, Calista D, Cannon Albright LA, Demenais F, Elder DE, Ghiorzo P, Gruis NA, Hansson J, Hogg D, Holland EA, Kanetsky PA, Kefford RF, Landi MT, Lang J, Leachman SA, Mackie RM, Magnusson V, Mann GJ, Niendorf K, Newton Bishop J, Palmer JM, Puig S, Puig-Butille JA, de Snoo FA, Stark M, Tsao H, Tucker MA, Whitaker L, Yakobson E (2006) High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res 66:9818–9828

    PubMed  CAS  Google Scholar 

  • Gorgoulis VG, Halazonetis TD (2010) Oncogene-induced senescence: the bright and dark side of the response. Curr Opin Cell Biol 22(6):816–827

    PubMed  CAS  Google Scholar 

  • Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA, Marais R, Wynford-Thomas D, Bennett DC (2006) Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer 95:496–505

    PubMed  CAS  Google Scholar 

  • Guney I, Wu S, Sedivy JM (2006) Reduced c-Myc signaling triggers telomere-independent senescence by regulating Bmi-1 and p16(INK4a). Proc Natl Acad Sci USA 103:3645–3650

    PubMed  CAS  Google Scholar 

  • Haferkamp S, Becker TM, Scurr LL, Kefford RF, Rizos H (2008) p16INK4a-induced senescence is disabled by melanoma-associated mutations. Aging Cell 7:733–745

    PubMed  CAS  Google Scholar 

  • Haferkamp S, Tran SL, Becker TM, Scurr LL, Kefford RF, Rizos H (2009a) The relative contributions of the p53 and pRb pathways in oncogene-induced melanocyte senescence. Aging 1:542–556

    PubMed  CAS  Google Scholar 

  • Haferkamp S, Scurr LL, Becker TM, Frausto M, Kefford RF, Rizos H (2009b) Oncogene-induced senescence does not require the p16INK4a or p14ARF melanoma tumor suppressors. J Invest Dermatol 128:1983–1991

    Google Scholar 

  • Hara E, Smith R, Parry D, Tahara H, Steven S, Peters G (1996) Regulation of p16(CDKN2) expression and its implications for cell immortalization and senescence. Mol Cell Biol 16:859–867

    PubMed  CAS  Google Scholar 

  • Haugstetter AM, Loddenkemper C, Lenze D, Grone J, Standfuss C, Petersen I, Dorken B, Schmitt CA (2010) Cellular senescence predicts treatment outcome in metastasised colorectal cancer. Br J Cancer 103:505–509

    PubMed  CAS  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    PubMed  CAS  Google Scholar 

  • He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134

    PubMed  CAS  Google Scholar 

  • Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a. Mol Cell 14:501–513

    PubMed  CAS  Google Scholar 

  • Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cell senescence aging primates. Science 311:1257

    PubMed  CAS  Google Scholar 

  • Hersey P, Zhang XD (2008) Adaptation to ER stress as a driver of malignancy and resistance to therapy in human melanoma. Pigment Cell Melanoma Res 21:358–367

    PubMed  CAS  Google Scholar 

  • Hinkal GW, Gatza CE, Parikh N, Donehower LA (2009) Altered senescence, apoptosis, and DNA damage response in a mutant p53 model of accelerated aging. Mech Ageing Dev 130:262–271

    PubMed  CAS  Google Scholar 

  • Hydbring P, Larsson LG (2010) Tipping the balance: Cdk2 enables Myc to suppress senescence. Cancer Res 70:6687–6691

    PubMed  CAS  Google Scholar 

  • Hydbring P, Bahram F, Su Y, Tronnersjo S, Hogstrand K, von der Lehr N, Sharifi HR, Lilischkis R, Hein N, Wu S, Vervoorts J, Henriksson M, Grandien A, Luscher B, Larsson LG (2010) Phosphorylation by Cdk2 is required for Myc to repress Ras-induced senescence in cotransformation. Proc Natl Acad Sci USA 107:58–63

    PubMed  CAS  Google Scholar 

  • Ichii-Nakato N, Takata M, Takayanagi S, Takashima S, Lin J, Murata H, Fujimoto A, Hatta N, Saida T (2006) High frequency of BRAFV600E mutation in acquired nevi and small congenital nevi, but low frequency of mutation in medium-sized congenital nevi. J Invest Dermatol 126:2111–2118

    PubMed  CAS  Google Scholar 

  • Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M (1999a) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the INK4a locus. Nature 397:164–168

    PubMed  CAS  Google Scholar 

  • Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M (1999b) Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc – induced apoptosis via INK4a/ARF. Genes Dev 13:2678–2690

    PubMed  CAS  Google Scholar 

  • Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM, Cheng T, DePinho RA, Sharpless NE, Scadden DT (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443:421–426

    PubMed  CAS  Google Scholar 

  • Jiang CC, Chen LH, Gillespie S, Kiejda KA, Mhaidat N, Wang YF, Thorne R, Zhang XD, Hersey P (2007) Tunicamycin sensitizes human melanoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by up-regulation of TRAIL-R2 via the unfolded protein response. Cancer Res 67:5880–5888

    PubMed  CAS  Google Scholar 

  • Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91:649–659

    PubMed  CAS  Google Scholar 

  • Keyes WM, Wu Y, Vogel H, Guo X, Lowe SW, Mills AA (2005) p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev 19:1986–1999

    PubMed  CAS  Google Scholar 

  • Kim H, You S, Farris J, Kong BW, Christman SA, Foster LK, Foster DN (2002) Expression profiles of p53-, p16INK4a-, and telomere-regulating genes in replicative senescent primary human, mouse, and chicken fibroblast cells. Exp Cell Res 272:199–208

    PubMed  CAS  Google Scholar 

  • Korotchkina LG, Leontieva OV, Bukreeva EI, Demidenko ZN, Gudkov AV, Blagosklonny MV (2010) The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway. Aging 2:344–352

    PubMed  CAS  Google Scholar 

  • Kortlever RM, Higgins PJ, Bernards R (2006) Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 8:877–884

    PubMed  CAS  Google Scholar 

  • Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, Sharpless NE (2004) INK4a/Arf expression is a biomarker of aging. J Clin Invest 114:1299–1307

    PubMed  CAS  Google Scholar 

  • Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S, Sharpless NE (2006) p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443:453–457

    PubMed  CAS  Google Scholar 

  • Kuilman T, Peeper DS (2009) Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 9:81–94

    PubMed  CAS  Google Scholar 

  • Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:1019–1031

    PubMed  CAS  Google Scholar 

  • Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113:3613–3622

    PubMed  CAS  Google Scholar 

  • Kuwata T, Kitagawa M, Kasuga T (1993) Proliferative activity of primary cutaneous melanocytic tumours. Virchows Arch A Pathol Anat Histopathol 423:359–364

    PubMed  CAS  Google Scholar 

  • Lal A, Kim HH, Abdelmohsen K, Kuwano Y, Pullmann R Jr, Srikantan S, Subrahmanyam R, Martindale JL, Yang X, Ahmed F, Navarro F, Dykxhoorn D, Lieberman J, Gorospe M (2008) p16(INK4a) translation suppressed by miR-24. PLoS ONE 3:e1864

    PubMed  Google Scholar 

  • Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ, DiMaio D, Hwang ES (2006) Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5:187–195

    PubMed  CAS  Google Scholar 

  • Li H, Collado M, Villasante A, Strati K, Ortega S, Canamero M, Blasco MA, Serrano M (2009) The INK4/Arf locus is a barrier for iPS cell reprogramming. Nature 460:1136–1139

    PubMed  CAS  Google Scholar 

  • Lin J, Takata M, Murata H, Goto Y, Kido K, Ferrone S, Saida T (2009) Polyclonality of BRAF mutations in acquired melanocytic nevi. J Natl Cancer Inst 101:1423–1427

    PubMed  CAS  Google Scholar 

  • Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH, Yang WL, Wang J, Egia A, Nakayama KI, Cordon-Cardo C, Teruya-Feldstein J, Pandolfi PP (2010) Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464:374–379

    PubMed  CAS  Google Scholar 

  • Liu D, Hornsby PJ (2007) Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res 67:3117–3126

    PubMed  CAS  Google Scholar 

  • Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Ibrahim JG, Thomas NE, Sharpless NE (2009) Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell 8:439–448

    PubMed  CAS  Google Scholar 

  • Loercher AE, Tank EMH, Delston RB, Harbour JW (2005) MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J Cell Biol 168:35–40

    PubMed  CAS  Google Scholar 

  • Maier AB, Westendorp RG (2009) Relation between replicative senescence of human fibroblasts and life history characteristics. Ageing Res Rev 8:237–243

    PubMed  CAS  Google Scholar 

  • Maldonado JL, Timmerman L, Fridlyand J, Bastian BC (2004) Mechanisms of cell-cycle arrest in Spitz nevi with constitutive activation of the MAP-kinase pathway. Am J Pathol 164:1783–1787

    PubMed  CAS  Google Scholar 

  • Matheu A, Maraver A, Klatt P, Flores I, Garcia-Cao I, Borras C, Flores JM, Vina J, Blasco MA, Serrano M (2007) Delayed ageing through damage protection by the Arf/p53 pathway. Nature 448:375–379

    PubMed  CAS  Google Scholar 

  • Matheu A, Maraver A, Serrano M (2008) The Arf/p53 pathway in cancer and aging. Cancer Res 68:6031–6034

    PubMed  CAS  Google Scholar 

  • Matheu A, Maraver A, Collado M, Garcia-Cao I, Canamero M, Borras C, Flores JM, Klatt P, Vina J, Serrano M (2009) Anti-aging activity of the INK4/Arf locus. Aging Cell 8:152–161

    PubMed  CAS  Google Scholar 

  • McCarron M, Osborne Y, Story CJ, Dempsey JL, Turner DR, Morley AA (1987) Effect of age on lymphocyte proliferation. Mech Ageing Dev 41:211–218

    PubMed  CAS  Google Scholar 

  • Melk A, Kittikowit W, Sandhu I, Halloran KM, Grimm P, Schmidt BM, Halloran PF (2003) Cell senescence in rat kidneys in vivo increases with growth and age despite lack of telomere shortening. Kidney Int 63:2134–2143

    PubMed  CAS  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ, Peeper DS (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724

    PubMed  CAS  Google Scholar 

  • Michaloglou C, Soengas MS, Mooi WJ, Peeper DS (2008) Comment on “Absence of senescence-associated beta-galactosidase activity in human melanocytic nevi in vivo”. J Invest Dermatol 128:1582–1583, author reply 1583–1584

    PubMed  CAS  Google Scholar 

  • Miracco C, Margherita De Santi M, Schurfeld K, Santopietro R, Lalinga AV, Fimiani M, Biagioli M, Brogi M, De Felice C, Luzi P, Andreassi L (2002) Quantitative in situ evaluation of telomeres in fluorescence in situ hybridization-processed sections of cutaneous melanocytic lesions and correlation with telomerase activity. Br J Dermatol 146:399–408

    PubMed  CAS  Google Scholar 

  • Molenaar JJ, Ebus ME, Geerts D, Koster J, Lamers F, Valentijn LJ, Westerhout EM, Versteeg R, Caron HN (2009) Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells. Proc Natl Acad Sci USA 106:12968–12973

    PubMed  CAS  Google Scholar 

  • Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425:962–967

    PubMed  CAS  Google Scholar 

  • Molofsky AV, He S, Bydon M, Morrison SJ, Pardal R (2005) Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16INK4a and p19Arf senescence pathways. Genes Dev 19:1432–1437

    PubMed  CAS  Google Scholar 

  • Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison SJ (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452

    PubMed  CAS  Google Scholar 

  • Mooi WJ, Peeper DS (2006) Oncogene-induced cell senescence – halting on the road to cancer. N Engl J Med 355:1037–1046

    PubMed  CAS  Google Scholar 

  • Naidoo N (2009a) The endoplasmic reticulum stress response and aging. Rev Neurosci 20:23–37

    PubMed  CAS  Google Scholar 

  • Naidoo N (2009b) ER and aging-protein folding and the ER stress response. Ageing Res Rev 8:150–159

    PubMed  CAS  Google Scholar 

  • Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    PubMed  CAS  Google Scholar 

  • Ohtani N, Zebedee Z, Huot TJ, Stinson JA, Sugimoto M, Ohashi Y, Sharrocks AD, Peters G, Hara E (2001) Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409:1067–1070

    PubMed  CAS  Google Scholar 

  • Pantoja C, Serrano M (1999) Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras. Oncogene 18:4974–4982

    PubMed  CAS  Google Scholar 

  • Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423:302–305

    PubMed  CAS  Google Scholar 

  • Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka J, Salem G, Pohida T, Heenan P, Duray P, Kallioniemi O, Hayward NK, Trent JM, Meltzer PS (2003) High frequency of BRAF mutations in nevi. Nat Genet 33:19–20

    PubMed  CAS  Google Scholar 

  • Price JS, Waters JG, Darrah C, Pennington C, Edwards DR, Donell ST, Clark IM (2002) The role of chondrocyte senescence in osteoarthritis. Aging Cell 1:57–65

    PubMed  CAS  Google Scholar 

  • Ramirez RD, Morales CP, Herbert BS, Rohde JM, Passons C, Shay JW, Wright WE (2001) Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev 15:398–403

    PubMed  CAS  Google Scholar 

  • Rasoamanantena P, Thweatt R, Labat-Robert J, Goldstein S (1994) Altered regulation of fibronectin gene expression in Werner syndrome fibroblasts. Exp Cell Res 213:121–127

    PubMed  CAS  Google Scholar 

  • Roberson RS, Kussick SJ, Vallieres E, Chen SY, Wu DY (2005) Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res 65:2795–2803

    PubMed  CAS  Google Scholar 

  • Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11:973–979

    PubMed  CAS  Google Scholar 

  • Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL (2007) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447:725–729

    PubMed  CAS  Google Scholar 

  • Sakamoto al e K (1993) Relative mitogenic activities of wild-type and retinoblastoma binding deficient SV40 T antigens in serum-deprived human diploid fibroblasts. Oncogene 8:1887–1893

    Google Scholar 

  • Sarkisian CJ, Keister BA, Stairs DB, Boxer RB, Moody SE, Chodosh LA (2007) Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat Cell Biol 9:493–505

    PubMed  CAS  Google Scholar 

  • Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM, Lowe SW (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109:335–346

    PubMed  CAS  Google Scholar 

  • Serrano M, Lee H-W, Chin L, Cordon-Cardo C, Beach D, DePinho RA (1996) Role of the INK4a locus in tumor suppression and cell mortality. Cell 85:27–37

    PubMed  CAS  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 85:593–602

    Google Scholar 

  • Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ (2000) Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res 257:162–171

    PubMed  CAS  Google Scholar 

  • Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677

    PubMed  CAS  Google Scholar 

  • Signer RA, Montecino-Rodriguez E, Witte ON, Dorshkind K (2008) Aging and cancer resistance in lymphoid progenitors are linked processes conferred by p16INK4a and Arf. Genes Dev 22:3115–3120

    PubMed  CAS  Google Scholar 

  • Smith JR, Nakanishi M, Robetorye RS, Venable SF, Pereira-Smith OM (1996) Studies demonstrating the complexity of regulation and action of the growth inhibitory gene SDI1. Exp Gerontol 31:327–335

    PubMed  CAS  Google Scholar 

  • Sugrue MM, Shin DY, Lee SW, Aaronson SA (1997) Wild-type p53 triggers a rapid senescence program in human tumor cells lacking functional p53. Proc Natl Acad Sci USA 94:9648–9653

    PubMed  CAS  Google Scholar 

  • Sviderskaya EV, Gray-Schopfer VC, Hill SP, Smit NP, Evans-Whipp TJ, Bond J, Hill L, Bataille V, Peters G, Kipling D, Wynford-Thomas D, Bennett DC (2003) p16/cyclin-dependent kinase inhibitor 2A deficiency in human melanocyte senescence, apoptosis, and immortalization: possible implications for melanoma progression. J Natl Cancer Inst 95:723–732

    PubMed  CAS  Google Scholar 

  • Te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62:1876–1883

    PubMed  CAS  Google Scholar 

  • Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665

    PubMed  CAS  Google Scholar 

  • Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR (2008) Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132:363–374

    PubMed  CAS  Google Scholar 

  • Wang Y, Meng A, Zhou D (2004) Inhibition of phosphatidylinostol 3-kinase uncouples H2O2-induced senescent phenotype and cell cycle arrest in normal human diploid fibroblasts. Exp Cell Res 298:188–196

    PubMed  CAS  Google Scholar 

  • Wei W, Sedivy JM (1999) Differentiation between senescence (M1) and crisis (M2) in human fibroblast cultures. Exp Cell Res 253:519–522

    PubMed  CAS  Google Scholar 

  • Wong H, Riabowol K (1996) Differential CDK-inhibitor gene expression in aging human diploid fibroblasts. Exp Gerontol 31:311–325

    PubMed  CAS  Google Scholar 

  • Wu CH, van Riggelen J, Yetil A, Fan AC, Bachireddy P, Felsher DW (2007) Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci USA 104:13028–13033

    PubMed  CAS  Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    PubMed  CAS  Google Scholar 

  • Zhuang D, Mannava S, Grachtchouk V, Tang WH, Patil S, Wawrzyniak JA, Berman AE, Giordano TJ, Prochownik EV, Soengas MS, Nikiforov MA (2008) C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 27:6623–6634

    PubMed  CAS  Google Scholar 

  • Zindy F, Quelle DE, Roussel MF, Sherr CJ (1997) Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15:203–211

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our work is supported by the National Health and Medical Research Council of Australia (NHMRC), the Cancer Council of New South Wales. HR is a Cancer Institute of NSW Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Rizos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Rizos, H., Scurr, L.L. (2011). Senescence. In: Bosserhoff, A. (eds) Melanoma Development. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0371-5_11

Download citation

Publish with us

Policies and ethics