Skip to main content

Wound healing

  • Chapter
Book cover Handbook of Burns

Abstract

The science of wound healing occupies a central role in surgical history and continues to represent a common theme for all surgical subspecialties. As early as 1550 B. C., the Ebers Papyrus of ancient Egypt documents the use of a multitude of natural remedies in wound healing. The Egyptians observed that honey, now known to have hygroscopic and antibacterial properties, proved an effective wound dressing. Mild antiseptics such as frankincense, date-wine, turpentine, and acacia gum also found a place in the Egyptian pharmacopeia. The Egyptians are also credited with the first use of sutures for primary wound closure. In a strikingly early use of 20th century medicine, there is documentation of the application of sour or moldy bread to wounds, now understood to harbor antibiotic-producing fungus [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sipos P, Gyory H, Hagymasi K, Ondrejka P, Blazovics A (2004) Special wound healing methods used in ancient egypt and the mythological background. World J Surg 28: 211–216

    Article  PubMed  Google Scholar 

  2. Forrest RD (1982) Early history of wound treatment. J Roy Soc Med 75: 198–205

    PubMed  CAS  Google Scholar 

  3. Lederberg J (2000) Infectious history. Science 288: 287–293

    Article  PubMed  CAS  Google Scholar 

  4. Kumar V, Abbas AK, Fausto N (2005) Robbins and Cotran pathologic basis of disease. Elsevier Saunders, Philadelphia

    Google Scholar 

  5. Townsend CM (2007) Sabiston textbook of surgery: Expert consult: Online & Print. Saunders

    Google Scholar 

  6. Lee RC (1997) Injury by electrical forces: pathophysiology, manifestations, and therapy. Curr Probl Surg 34: 677

    Article  PubMed  CAS  Google Scholar 

  7. Waselenko JK, MacVittie TJ, Blakely WF, Pesik N, Wiley AL, Dickerson WE, Tsu H, Confer DL, Coleman CN, Seed T (2004) Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann Intern Med 140: 1037

    PubMed  Google Scholar 

  8. Foster K, Greenhalgh D, Gamelli RL, Mozingo D, Gibran N, Neumeister M, Abrams SZ, Hantak E, Grubbs L, Ploder B (2008) Efficacy and safety of a fibrin sealant for adherence of autologous skin grafts to burn wounds: results of a phase 3 clinical study. J Burn Care Res 29: 293

    Article  PubMed  Google Scholar 

  9. Ramasastry SS (2005) Acute wounds. Clin Plast Surg 32: 195–208

    Article  PubMed  Google Scholar 

  10. Singer AJ, Clark RAF (1999) Cutaneous wound healing. N Engl J Med 341: 738

    Article  PubMed  CAS  Google Scholar 

  11. Ley K (1992) Leukocyte adhesion to vascular endothelium. J Reconstr Microsurg 8: 495–495

    Article  PubMed  CAS  Google Scholar 

  12. Leibovich SJ, Ross R (1975) The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol 78: 71–100

    PubMed  CAS  Google Scholar 

  13. Nwomeh BC, Olutoye OO, Diegelmann RF, Cohen IK (1997) Biology of wound healing. J Surg Pathol 2: 1–19

    Google Scholar 

  14. Murphy MA, Joyce WP, Condron C, Bouchier-Hayes D (2002) A reduction in serum cytokine levels parallels healing of venous ulcers in patients undergoing compression therapy. Eur J Vasc Endovasc Surg 23: 349–352

    Article  PubMed  CAS  Google Scholar 

  15. Helme RD, Eglezos A, Hosking CS (1987) Substance P induces chemotaxis of neutrophils in normal and capsaicin-treated rats. Immunol Cell Biol 65: 267–269

    Article  PubMed  CAS  Google Scholar 

  16. Kavelaars A, Jeurissen F, Heijnen CJ (1994) Substance P receptors and signal transduction in leukocytes. Immunomethods 5: 41

    Article  PubMed  CAS  Google Scholar 

  17. Ziche M, Morbidelli L, Masini E, Amerini S, Granger HJ, Maggi CA, Geppetti P, Ledda F (1994) Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 94: 2036

    Article  PubMed  CAS  Google Scholar 

  18. Ziche M, Morbidelli L, Pacini M, Geppetti P, Alessandri G, Maggi CA (1990) Substance P stimulates neovascularization in vivo and proliferation of cultured endothelial cells. Microvasc Res 40: 264–278

    Article  PubMed  CAS  Google Scholar 

  19. Paus R, Heinzelmann T, Robicsek S, Czarnetzki BM, Maurer M (1995) Substance P stimulates murine epidermal keratinocyte proliferation and dermal mast cell degranulation in situ. Arch Dermatol Res 287: 500–502

    Article  PubMed  CAS  Google Scholar 

  20. Scott JR, Muangman PR, Tamura RN, Zhu KQ, Liang Z, Anthony J, Engrav LH, Gibran NS (2005) Substance P levels and neutral endopeptidase activity in acute burn wounds and hypertrophic scar. Plast Reconstr Surg 115: 1095

    Article  PubMed  CAS  Google Scholar 

  21. Scott JR, Muangman P, Gibran NS (2007) Making sense of hypertrophic scar: a role for nerves. Wound Repair Regen 15:S27–S31

    Article  PubMed  Google Scholar 

  22. Luster AD, Cardiff RD, MacLean JA, Crowe K, Granstein RD (1998) Delayed wound healing and disorganized neovascularization in transgenic mice expressing the IP-10 chemokine. Proceedings of the Association of American Physicians 110: 183

    PubMed  CAS  Google Scholar 

  23. Liechty KW, Adzick NS, Crombleholme TM (2000) Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine 12: 671–676

    Article  PubMed  CAS  Google Scholar 

  24. Spyrou GE, Naylor IL (2002) The effect of basic fibroblast growth factor on scarring. Br J Plast Surg 55: 275–282

    Article  PubMed  CAS  Google Scholar 

  25. Rennekampff HO, Hansbrough JF, Kiessig V, Doré C, Sticherling M, Schröder JM (2000) Bioactive interleukin-8 is expressed in wounds and enhances wound healing. J Surg Res 93: 41–54

    Article  PubMed  CAS  Google Scholar 

  26. Smith PD, Kuhn MA, Franz MG, Wachtel TL, Wright TE, Robson MC (2000) Initiating the inflammatory phase of incisional healing prior to tissue injury. J Surg Res 92: 11–17

    Article  PubMed  CAS  Google Scholar 

  27. Pierce GF, Mustoe TA, Lingelbach J, Masakowski VR, Gramates P, Deuel TF (1989) Transforming growth factor beta reverses the glucocorticoid-induced woundhealing deficit in rats: possible regulation in macrophages by platelet-derived growth factor. Proc Natl Acad Sci U S A 86: 2229

    Article  PubMed  CAS  Google Scholar 

  28. Tredget EE, Wang R, Shen Q, Scott PG, Ghahary A (2000) Transforming growth factor-beta mRNA and protein in hypertrophic scar tissues and fibroblasts: antagonism by IFN-alpha and IFN-gamma in vitro and in vivo. J Interferon Cytokine Res 20: 143–152

    Article  PubMed  CAS  Google Scholar 

  29. Gabriel VA (2009) Transforming growth factor-[beta] and angiotensin in fibrosis and burn injuries. J Burn Care Res 30: 471

    Article  PubMed  Google Scholar 

  30. Shah M, Foreman DM, Ferguson MW (1995) Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 108: 985

    PubMed  CAS  Google Scholar 

  31. Occleston NL, Laverty HG, O’Kane S, Ferguson MWJ (2008) Prevention and reduction of scarring in the skin by Transforming Growth Factor beta 3 (TGF3): from laboratory discovery to clinical pharmaceutical. J Biomater Sci, Polym Ed 19: 1047–1063

    Article  CAS  Google Scholar 

  32. Tsou R, Fathke C, Wilson L, Wallace K, Gibran N, Isik F (2002) Retroviral delivery of dominant-negative vascular endothelial growth factor receptor type 2 to murine wounds inhibits wound angiogenesis. Wound Repair Regen 10: 222–229

    Article  PubMed  Google Scholar 

  33. Nissen NN, Polverini PJ, Koch AE, Volin MV, Gamelli RL, DiPietro LA (1998) Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am Journal Pathol 152: 1445

    CAS  Google Scholar 

  34. Nagy JA, Dvorak AM, Dvorak HF (2007) VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol 2: 251–275

    Article  PubMed  CAS  Google Scholar 

  35. Hopf HW, Gibson JJ, Angeles AP, Constant JS, Feng JJ, Rollins MD, Zamirul Hussain M, Hunt TK (2005) Hyperoxia and angiogenesis. Wound Repair Regen 13: 558–564

    Article  PubMed  Google Scholar 

  36. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843–845

    Article  PubMed  CAS  Google Scholar 

  37. Packer L, Fuehr K (1977) Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 267: 423–425

    Article  PubMed  CAS  Google Scholar 

  38. Gawronska B, Bogacki M, Rim JS, Monroe WT, Manuel JA (2006) Scarless skin repair in immunodeficient mice. Wound Repair Regen 14: 265–276

    Article  Google Scholar 

  39. Guo S, DiPietro LA (2010) Factors affecting wound healing. J Dent Res 89: 219

    Article  PubMed  CAS  Google Scholar 

  40. Park JE, Barbul A (2004) Understanding the role of immune regulation in wound healing. Am J Surg 187:S11–S16

    Article  Google Scholar 

  41. Jameson J, Ugarte K, Chen N, Yachi P, Fuchs E, Boismenu R, Havran WL (2002) A role for skin gamma delta T cells in wound repair. Science 296: 747

    Article  PubMed  CAS  Google Scholar 

  42. Mills RE, Taylor KR, Podshivalova K, McKay DB, Jameson JM (2008) Defects in skin tgamma∼ tdelta∼ T cell function contribute to delayed wound repair in rapamycin-treated mice. J Immunol 181: 3974

    PubMed  CAS  Google Scholar 

  43. Santoro MM, Gaudino G (2005) Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp Cell Res 304: 274–286

    Article  PubMed  CAS  Google Scholar 

  44. Martin P (1997) Wound healing-aiming for perfect skin regeneration. Science 276: 75–81

    Article  PubMed  CAS  Google Scholar 

  45. Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y (2001) Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104: 233–245

    Article  PubMed  CAS  Google Scholar 

  46. Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM (2000) Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102: 451–461

    Article  PubMed  CAS  Google Scholar 

  47. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453: 314–321

    Article  PubMed  CAS  Google Scholar 

  48. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11: 1351–1354

    Article  PubMed  CAS  Google Scholar 

  49. Levy V, Lindon C, Harfe BD, Morgan BA (2005) Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev Cell 9: 855–861

    Article  PubMed  CAS  Google Scholar 

  50. Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, Cotsarelis G (2007) Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447: 316–320

    Article  PubMed  CAS  Google Scholar 

  51. Wodarz A, Nusse R (2003) Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14: 59

    Article  Google Scholar 

  52. Toy LW (2005) Matrix metalloproteinases: their function in tissue repair. Jo Wound Care 14: 20–22

    CAS  Google Scholar 

  53. Lawrence WT (1998) Physiology of the acute wound. Clin Plast Surg 25: 321

    PubMed  CAS  Google Scholar 

  54. Peled ZM, Phelps ED, Updike DL, Chang J, Krummel TM, Howard EW, Longaker MT (2002) Matrix metalloproteinases and the ontogeny of scarless repair: the other side of the wound healing balance. Plast Reconst Surg 110: 801

    Article  PubMed  Google Scholar 

  55. Dang C (2003) Fetal wound healing current perspectives. Clin Plast Surg 30(1): 13–23

    Article  PubMed  Google Scholar 

  56. Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, Isik F (2004) Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells 22: 812–822

    Article  PubMed  Google Scholar 

  57. Brittan M, Braun KM, Reynolds LE, Conti FJ, Reynolds AR, Poulsom R, Alison MR, Wright NA, Hodivala-Dilke KM (2005) Bone marrow cells engraft within the epidermis and proliferate in vivo with no evidence of cell fusion. J Pathol 205: 1–13

    Article  PubMed  Google Scholar 

  58. Deng W, Han Q, Liao L, Li C, Ge W, Zhao Z, You S, Deng H, Murad F, Zhao RCH (2005) Engrafted bone marrow-derived Flk-1+ mesenchymal stem cells regenerate skin tissue. Tissue engineering 11: 110–119

    Article  PubMed  CAS  Google Scholar 

  59. Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25: 2648–2659

    Article  PubMed  CAS  Google Scholar 

  60. Chen L, Tredget EE, Wu PYG, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3: 1886

    Article  Google Scholar 

  61. Kwon DS, Gao X, Liu, YB, Dulchavsky DS, Danyluk AL, Bansal M, Chopp M, McIntosh K, Arbab AS, Dulchavsky SA (2008) Treatment with bone marrown-derived stromal cells accelerates wound healing in diabetic rats. Int Wound J 5: 453–463

    Article  PubMed  Google Scholar 

  62. Suh W, Kim KL, Kim JM, Shin IS, Lee YS, Lee JY, Jang HS, Lee JS, Byun J, Choi JH (2005) Transplantation of endothelial progenitor cells accelerates dermal wound healing with increased recruitment of monocytes/ macrophages and neovascularization. Stem Cells 23: 1571–1578

    Article  PubMed  Google Scholar 

  63. Barcelos LS, Duplaa C, Krankel N, Graiani G, Invernici G, Katare R, Siragusa M, Meloni M, Campesi I, Monica M (2009) Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ Res 104(9): 1095–1102

    Article  PubMed  CAS  Google Scholar 

  64. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1: 71

    PubMed  CAS  Google Scholar 

  65. Yang L, Scott PG, Dodd C, Medina A, Jiao H, Shankowsky HA, Ghahary A, Tredget EE (2005) Identification of fibrocytes in postburn hypertrophic scar. Wound Repair Regen 13: 398–404

    Article  PubMed  Google Scholar 

  66. Wang JF, Dodd C, Shankowsky HA, Scott PG, Tredget EE (2008) Deep dermal fibroblasts contribute to hypertrophic scarring. Lab Invest 88: 1278–1290

    Article  PubMed  CAS  Google Scholar 

  67. Mori L, Bellini A, Stacey MA, Schmidt M, Mattoli S (2005) Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Expl Cell Res 304: 81–90

    Article  CAS  Google Scholar 

  68. Yagmur C, Akaishi S, Ogawa R, Guneren E (2010) Mechanical receptor-related mechanisms in Scar management: a review and hypothesis. Plast Reconst Surg 126: 426

    Article  PubMed  CAS  Google Scholar 

  69. Souba WW, Fink MP, Jurkovich GJ, Kaiser LP, Pearce WH, Pemberton JH, Sopera NJ (2007) ACS surgery: principles & practice, 6th edn. WebMD Professional Publishing

    Google Scholar 

  70. Ueno C, Hunt TK, Hopf HW (2006) Using physiology to improve surgical wound outcomes. Plast Reconst Surg 117: 59S

    Google Scholar 

  71. Robson MC (1997) Wound infection: a failure of wound healing Caused by an imbalance of bacteria. Surg Clin North Am 77: 637–650

    Article  PubMed  CAS  Google Scholar 

  72. Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF (2007) Impaired wound healing. Clin Dermatol 25: 19–25

    Article  PubMed  Google Scholar 

  73. Gibbs J, Cull W, Henderson W, Daley J, Hur K, Khuri SF (1999) Preoperative serum albumin level as a predictor of operative mortality and morbidity: results from the National VA Surgical Risk Study. Arch Surg 134: 36

    Article  PubMed  CAS  Google Scholar 

  74. Jeschke MG, Herndon DN, Ebener C, Barrow RE, Jauch KW (2001) Nutritional intervention high in vitamins, protein, amino acids, and tomega∼ 3 fatty acids improves protein metabolism during the hypermetabolic state after thermal injury. Arch Surg 136: 1301

    Article  PubMed  CAS  Google Scholar 

  75. Desneves KJ, Todorovic BE, Cassar A, Crowe TC (2005) Treatment with supplementary arginine, vitamin C and zinc in patients with pressure ulcers: a randomised controlled trial. Clin Nutr 24: 979–987

    Article  PubMed  CAS  Google Scholar 

  76. Williams JZ, Abumrad NN, Barbul A (2002) Effect of a specialized amino acid mixture on human collagen synthesis. Ann Surg 236: 369–374

    Article  PubMed  Google Scholar 

  77. Williams FN, Herndon DN, Kulp GA (2010) Propranolol decreases cardiac work in a dose-dependent manner in severely burned children. Surgery 149(2): 231–239

    Article  Google Scholar 

  78. Demling RH, Orgill DP (2000) The anticatabolic and wound healing effects of the testosterone analog oxandrolone after severe burn injury. J Crit Care 15: 12–17

    Article  PubMed  CAS  Google Scholar 

  79. Pham TN, Klein MB, Gibran NS, Arnoldo BD, Gamelli RL, Silver GM, Jeschke MG, Finnerty CC, Tompkins RG, Herndon DN (2008) Impact of oxandrolone treatment on acute outcomes after severe burn injury. Injury 2: 4

    Google Scholar 

  80. Wicke C, Halliday B, Allen D, Roche NS, Scheuenstuhl H, Spencer MM, Roberts AB, Hunt TK (2000) Effects of steroids and retinoids on wound healing. Arch Surg 135: 1265

    Article  PubMed  CAS  Google Scholar 

  81. Nathens AB, Neff MJ, Jurkovich GJ (2003) Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Nutr Clin Pract 18: 264

    Article  Google Scholar 

  82. Fernandez-Madrid F, Prasad AS, Oberleas D (1973) Effect of zinc deficiency on nucleic acids, collagen, and noncollagenous protein of the connective tissue. J Lab Clin Med 82: 951

    PubMed  CAS  Google Scholar 

  83. Andrews M, Gallagher-Allred C (1999) The role of zinc in wound healing. Adv Skin Wound Care 12: 137

    CAS  Google Scholar 

  84. Macon WL, Pories WJ (1971) The effect of iron deficiency anemia on wound healing. Plast Reconst Surg 48: 399

    Google Scholar 

  85. Sengupta A, Lichti UF, Carlson BA, Ryscavage AO, Gladyshev VN, Yuspa SH, Hatfield DL, Cobine P (2010) Selenoproteins are essential for proper keratinocyte function and skin development. PloS one 5: 199–209

    Article  Google Scholar 

  86. Colwell AS, Phan TT, Kong W, Longaker MT, Lorenz PH (2005) Hypertrophic scar fibroblasts have increased connective tissue growth factor expression after transforming growth factor-[beta] stimulation. Plast Reconst Surg 116: 1387

    Article  PubMed  CAS  Google Scholar 

  87. Lu L, Saulis AS, Liu WR, Roy NK, Chao JD, Ledbetter S, Mustoe TA (2005) The temporal effects of anti-TGF-[beta] 1, 2, and 3 monoclonal antibody on wound healing and hypertrophic scar Formation. J Am Coll Surg 201: 391–397

    Article  PubMed  Google Scholar 

  88. Tuan TL, Nichter LS (1998) The molecular basis of keloid and hypertrophic scar formation. Mol MedToday 4: 19–24

    CAS  Google Scholar 

  89. Ladwig GP, Robson MC, Liu R, Kuhn M, Muir DF, Schultz GS (2002) Ratios of activated matrix metalloproteinasen9 to tissue inhibitor of matrix metalloproteinasen1 in wound fluids are inversely correlated with healing of pressure ulcers. Wound Repair Regen 10: 26–37

    Article  PubMed  Google Scholar 

  90. Copcu E (2009) Marjolin’s ulcer: a preventable complication of burns? Plast Reconst Surg 124: 156e

    Article  PubMed  CAS  Google Scholar 

  91. Senarath-Yapa K, Enoch S (2009) Management of burns in the community. Wounds UK 5: 1–7

    Google Scholar 

  92. Demling RH, DeSanti L (2010) Managing the burn wound. Burnsurgery.org. 11 December 2010 > http://burnsurgery.org >

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole S. Gibran M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Brown, D.A., Gibran, N.S. (2012). Wound healing. In: Jeschke, M.G., Kamolz, LP., Sjöberg, F., Wolf, S.E. (eds) Handbook of Burns. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0348-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0348-7_22

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0347-0

  • Online ISBN: 978-3-7091-0348-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics