Advertisement

Plasticity of Three-Dimensional Foams

  • Andreas Öchsner
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 521)

Abstract

This chapter gives in the first part a summary of some important elements in continuum mechanics, i.e. the decomposition of the stress tensor in its spherical and the deviatoric part and the use of stress invariants to describe the physical content of the stress tensor. In the next part, the elastic behaviour of isotropic materials based on generalised Hooke’s law is summarised and a notation appropriate for computer implementation is introduced. The constitutive description is then extended to plastic material behaviour and the description based on a yield condition, flow rule and hardening law is introduced. The concept of invariants is consistently applied and explained for the characterisation of yield conditions. A classical simple cubic cell model based on beams (Gibson/Ashby model) is investigated in the next chapter in order to highlight the assumptions and the derivation of the macroscopic material properties (elastic constants and yield stress). In the following, a strategy to determine the influence of the hydrostatic stress on the yield behaviour is proposed and conceptionally realised by a state of plane strain and a state of uniaxial strain. In addition, alternative ways to determine the complete set of elastic constants are shown. The last part covers the implementation of yield conditions into finite element codes. The understanding of the predictor-corrector concept is required to provide new constitutive equations in commercial computational codes.

Keywords

Stress Tensor Elastic Constant Yield Condition Hydrostatic Stress Flow Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. H. Altenbach, J. Altenbach, and A. Zolochevsky. Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik. Deutscher Verlag für Grundstoffindustrie, 1995.Google Scholar
  2. J. Altenbach and H. Altenbach. Einführung in die Kontinuumsmechanik. B.G. Teubner, 1994.Google Scholar
  3. H. Armen. Assumptions, models, and computational methods for plasticity. Computers and Structures, 10:161–174, 1979.zbMATHCrossRefGoogle Scholar
  4. M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley. Metal foams: a design guide. Butterworth-Heinemann, 2000.Google Scholar
  5. G. Backhaus. Deformationsgesetze. Akademie-Verlag, 1983.Google Scholar
  6. T. Belytschko, W.K. Liu, and B. Moran. Nonlinear finite elements for continua and structures. John Wiley & Sons, 2000.Google Scholar
  7. J. Betten. Kontinuumsmechanik: ein Lehrund Arbeitsbuch. Springer-Verlag, 2001.Google Scholar
  8. J. Betten. Creep Mechanics. Springer-Verlag, 2005.Google Scholar
  9. I.N. Bronstein and K.A. Semendjajew. Taschenbuch der Mathematik (Erg. Kap.). Verlag Harri Deutsch, 1988.Google Scholar
  10. W.F. Chen and D.J. Han. Plasticity for Structural Engineers. Springer-Verlag, 1988.Google Scholar
  11. W.F. Chen and A.F. Saleeb. Constitutive Equations for Engineering Materials. Volume 1: Elasticity and Modeling. John Wiley & Sons, 1982.Google Scholar
  12. L.J. Cohen and O. Ishai. The elastic properties of three-phase composites. Journal of Composite Materials, 1:390–403, 1967.CrossRefGoogle Scholar
  13. M.A. Crisfield. Non-linear finite element analysis of solids and structures. Vol. 2: Advanced topics. John Wiley & Sons, 2000.Google Scholar
  14. M.A. Crisfield. Non-linear finite element analysis of solids and structures. Vol. 1: Essentials. John Wiley & Sons, 2001.Google Scholar
  15. E.A. de Souza Neto, D. Peric, and D.R.J. Owen. Computational Methods for Plasticity: Theory and Applications. John Wiley & Sons, 2008.Google Scholar
  16. V.S. Deshpande and N.A. Fleck. Isotropic const it uitve models for metallic foams. Journal of the Mechanics and Physics of Solids, 48:1253–1283, 2000.zbMATHCrossRefGoogle Scholar
  17. V.S. Deshpande and N.A. Fleck. Multi-axial yield behaviour of polymer foams. Acta Materialia, 49:1859–1866, 2001.CrossRefGoogle Scholar
  18. L.A. Feldkamp, S.A. Goldstein, A.M. Parfitt, G. Jesion, and M. Kleerekoper. The direct examination of three-dimensional bone architecture in vitro by computed tomography. Journal of Bone and Mineral Research, 4:3–10, 1989.CrossRefGoogle Scholar
  19. T. Fiedler, A. Öchsner, and J. Gracio. The uniaxial strain test — a simple method for the characterization of porous materials. Structural Engineering and Mechanics, 22:17–32, 2006.Google Scholar
  20. W. Flügge. Handbook of Engineering Mechanics. McGraw-Hill Book Company, 1962.Google Scholar
  21. A.H. Gent and A.G. Thomas. The deformation of foamed elastic materials. Journal of Applied Polymer Science, 1:107–113, 1959.CrossRefGoogle Scholar
  22. A.N. Gent and A.G. Thomas. Mechanics of foamed elastic materials. Rubber Chemistry and Technology, 36:597–610, 1963.Google Scholar
  23. L.J. Gibson. The mechanical behaviour of cancellous bone. Journal of Biomechanics, 18:317–328, 1985.CrossRefGoogle Scholar
  24. L.J. Gibson and M.F. Ashby. The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London Series A — Mathematical and Physical Sciences, 382:43–59, 1982.CrossRefGoogle Scholar
  25. L.J. Gibson and M.F. Ashby. Cellular Solids: Structures and Properties. Cambridge University Press, 1997.Google Scholar
  26. H.G. Hahn. Elastizittslehre. B.G. Teubner, 1985.Google Scholar
  27. Z. Hashin. The elastic moduli of heterogeneous materials. Journal of Applied Mechanics — Transactions of the ASME, 29:143–150, 1962.zbMATHMathSciNetGoogle Scholar
  28. M. Jirasek and Z.P. Bazant. Inelastic Analysis of Structures. John Wiley & Sons, 2002.Google Scholar
  29. S.V. Kanakkanatt. Mechanical anisotropy of open-cell foams. Journal of Cellular Plastics, 9:50–53, 1973.CrossRefGoogle Scholar
  30. J.H. Keyak, J.M. Meagher, H.B. Skinner, and CD. Mote. Automated three-dimensional finite element modelling of bone: A new method. Journal of Biomedical Engineering, 12:389–397, 1990.CrossRefGoogle Scholar
  31. V. Kolupaev. Dreidimensionales Kriechverhalten von Bauteilen aus unverstärkten Thermoplasten. Papierflieger, 2006.Google Scholar
  32. G. Lebon. Extended thermodynamics.In W. Muschik, editor, Non-Equilibrium Thermodynamics with Application to Solids. Springer-Verlag, 1992.Google Scholar
  33. J.M. Lederman. The prediction of the tensile properties of flexible foams. Journal of Applied Polymer Science, 15:693–703, 1971.CrossRefGoogle Scholar
  34. J. Lemaitre. A Course on Damage Mechanics. Springer-Verlag, 1996.Google Scholar
  35. J. Lubliner. Plasticity Theory. Macmillan Publishing Company, 1990.Google Scholar
  36. O. Mahrenholtz and H. Ismar. Ein modell des elastisch-plastischen Über gangsverhalten metallischer Werkstoffe. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft, 30:138–144, 1979.zbMATHGoogle Scholar
  37. O. Mahrenholtz and H. Ismar. Zum elastisch-plastischen Uber gangsverhalten metallischer Werkstoffe. Ingenieur-Archiv, 50:217–224, 1981.zbMATHCrossRefGoogle Scholar
  38. H. Mang and G. Hofstetter. Festigkeitslehre. Springer Verlag, 2000.Google Scholar
  39. I.W. Marks and T.N. Gardner. The use of strain energy as a convergence criterion in the finite element modelling of bone and the effect of model geometry on stress convergence. Journal of Biomedical Engineering, 14: 474–476, 1993.CrossRefGoogle Scholar
  40. V.A. Matonis. Elastic behavior of low density rigid foams in structural applications. SPE Journal, 20:1024–1030, 1964.Google Scholar
  41. B. Moran, M. Ortiz, and C.F. Shih. A unified approach to finite deformation elastoplasticity based on the use of hyper elastic constitutive equations. International Journal for Numerical Methods in Engineering, 29:483–514, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  42. E.P. Müller, P. Rüegsegger, and P. Seitz. Optimal ct settings for bone evaluations. Physics in Medicine and Biololgy, 30:401–409, 1985.CrossRefGoogle Scholar
  43. R. Müller and P. Rüegsegger. Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. Medical Engineering & Physics, 17:126–133, 1995.CrossRefGoogle Scholar
  44. G.C. Nayak and O.C. Zienkiewicz. Convenient form of stress invariants for plasticity. Journal of the Structural Division-ASCE, 98:1949–954, 1972.Google Scholar
  45. A. Öchsner. Experimentelle und numerische Untersuchung des elastoplastischen Verhaltens zellularer Modellwerkstoffe [Experimental and Numerical Investigations of the Elastic-Plastic Properties of Model Cellular Materials]. VDI Verlag, 2003.Google Scholar
  46. A. Öchsner, T. Fiedler, J. Grácio, and G. Kuhn. Experimental techniques for the investigation of the elasto-plastic transition zone of foamed materials. Advanced Engineering Materials, 8:884–889, 2006.CrossRefGoogle Scholar
  47. J.C. Simo and T. J. R. Hughes. Computational Inelasticity. Springer-Verlag, 1998.Google Scholar
  48. J.C. Simo and M. Ortiz. A unified approach to finite deformation elastoplasticity based on the use of hyper elastic constitutive equations. Computational Method Appl M, 49:221–245, 1985.zbMATHCrossRefGoogle Scholar
  49. B. van Rietbergen, H. Weinans, R. Huiskes, and A. Odgaard. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. Journal of Biomechanics, 28:69–81, 1995.CrossRefGoogle Scholar
  50. J.K. Weaver and J. Chalmers. Cancellous bone: Its strength and changes with aging and an evaluation of some methods for measuring its mineral content. Journal of Bone and Joint Surgery — American Volume, 48: 289–298, 1966.Google Scholar
  51. P. Wriggers. Nichtlineare Finite-Element-Methoden. Springer-Verlag, 2001.Google Scholar
  52. M. Zyczkowski. Combined Loadings in the Theory of Plasticity. PWN — Polish Scientific Publishers, 1981.Google Scholar

Copyright information

© CISM, Udine 2010

Authors and Affiliations

  • Andreas Öchsner
    • 1
    • 2
  1. 1.Department of Applied MechanicsTechnical University of Malaysia UTMSkudaiMalaysia
  2. 2.University Centre for Mass and Thermal Transport in Engineering MaterialsThe University of NewcastleCallaghanAustralia

Personalised recommendations