Skip to main content

Studies on the mechanisms of translocation and termination

  • Chapter
Ribosomes

Abstract

This chapter addresses two long-standing questions concerning ribosome structure and function: (i) How are the mRNA and tRNAs moved through the ribosome following formation of each peptide bond? and (ii) how does recognition of a stop codon result in hydrolysis of peptidyl-tRNA? Not surprisingly, results from structural biology have played an important part in formulating mechanistic models for both of these processes. Although structural information is essential for understanding the detailed molecular mechanisms of such processes, it is in itself insufficient for establishing whether or not they are correct. There are already sufficient published examples of false mechanistic inferences based on ribosome structures to remind us that such models need to be tested experimentally, preferably by diverse approaches. Key aspects of the standard models for translocation and termination have emerged from structural observations — cryoEM reconstructions and x-ray crystallography, respectively. Both models have been subjected to experimental tests of various kinds, a process that continues in many laboratories. In the first part of this chapter, we describe the results of experiments using both single-molecule and bulk fluorescence methods to examine the relationship between intersubunit movement, hybrid-states binding of tRNA a6nd translocation. In the second part, we discuss a model for the mechanism of translation termination based on the x-ray crystal structures of the translation termination complexes, and some experimental tests of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brunelle JL, Shaw JJ, Youngman EM, Green R (2008) Peptide release on the ribosome depends critically on the 2′ OH of the peptidyl-tRNA substrate. RNA 14: 1526–1531

    Article  PubMed  CAS  Google Scholar 

  • Cornish PV, Ermolenko DN, Noller HF and Ha T (2008) Spontaneous intersubunit rotation in single ribosomes. Mol Cell 30: 578–588

    Article  PubMed  CAS  Google Scholar 

  • Ermolenko DN, Noller HF (2010) mRNA translocation occurs during the second step of ribosomal intersubunit rotation. Nat Struct Mol Biol 18: 457–462

    Article  CAS  Google Scholar 

  • Ermolenko DN et al. (2007a) Observation of intersubunit movement of the ribosome in solution using FRET. J Mol Biol 370: 530–540

    Article  PubMed  CAS  Google Scholar 

  • Ermolenko DN et al. (2007b) The antibiotic viomycin traps the ribosome in an intermediate state of translocation. Nat Struct Mol Biol 14: 493–497

    Article  PubMed  CAS  Google Scholar 

  • Frank J, Agrawal RK (2000) A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406: 318–322

    Article  PubMed  CAS  Google Scholar 

  • Frank J, Gao H, Sengupta J, Gao N, Taylor DJ (2007) The process of mRNA-tRNA translocation. Proc Natl Acad Sci USA 104: 19671–19678

    Article  PubMed  Google Scholar 

  • Freistroffer DV, Kwiatkowski M, Buckingham RH, Ehrenberg M (2000) The accuracy of codon recognition by polypeptide release factors. Proc Natl Acad Sci USA 97: 2046–2051

    Article  PubMed  CAS  Google Scholar 

  • Frolova LY et al. (1999) Mutations in the highly conserved GGQ motif of class peptidyl-1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA 5: 1014–1020

    Article  PubMed  CAS  Google Scholar 

  • Horan LH, Noller HF (2007) Intersubunit movement is required for ribosomal translocation. Proc Natl Acad Sci USA 104: 4881–4885

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Uno M, Nakamura Y (2000) A tripeptide ‘anticodon’ deciphers stop codons in messenger RNA. Nature 403: 680–684

    Article  PubMed  CAS  Google Scholar 

  • Klaholz BP et al. (2003) Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature 421: 90–94

    Article  PubMed  CAS  Google Scholar 

  • Korostelev A, Asahara H, Lancaster L, Laurberg M, Hirschi A, Zhu J, Trakhanov S, Scott WG, Noller HF (2008) Crystal structure of a translation termination complex formed with release factor RF2. Proc Natl Acad Sci USA, 105: 19 684–19 689

    Article  Google Scholar 

  • Korostelev A, Zhu J, Asahara H† and Noller HF (2010) Recognition of the amber UAG codon by release factor RF1. EMBO J 29: 2577–2585

    Article  PubMed  CAS  Google Scholar 

  • Laurberg M, Asahara H, Korostelev A, Zhu J, Trakhanov S and Noller HF (2008) Structural basis for translation termination on the 70S ribosome. Nature, 454: 852–857

    Article  PubMed  CAS  Google Scholar 

  • Moazed D, Robertson JM, Noller HF (1988) Interaction of elongation factors EF-G, EF-Tu with a conserved loop in 23S RNA. Nature 334, 362–364

    Article  PubMed  CAS  Google Scholar 

  • Moazed D, Noller HF (1989) Intermediate states in the movement of transfer RNA in the ribosome. Nature 342: 142–148

    Article  PubMed  CAS  Google Scholar 

  • Mora L, Heurgue-Hamard V, Champ S, Ehrenberg M, Kisselev LL, Buckingham RH (2003) The essential role of the invariant GGQ motif in the function and stability in vivo of bacterial release factors RF1 and RF2. Mol Microbiol 47: 267–275

    Article  PubMed  CAS  Google Scholar 

  • Ogle JM et al. (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292: 897–902

    Article  PubMed  CAS  Google Scholar 

  • Petry S et al. (2005) Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123: 1255–1266

    Article  PubMed  CAS  Google Scholar 

  • Rawat UB et al. (2003) A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature 421: 87–90

    Article  PubMed  CAS  Google Scholar 

  • Schmeing TM, Huang KS, Strobel SA, Steitz TA (2005) An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature, 438: 520–524

    Article  PubMed  CAS  Google Scholar 

  • Seit-Nebi A, Frolova L, Justesen J, Kisselev L (2001) Class-1 translation termination factors: invariant GGQ minidomain is essential for release activity and ribosome binding but not for stop codon recognition. Nucleic Acids Res 29: 3982–3987

    PubMed  CAS  Google Scholar 

  • Shaw JJ, Green R (2007) Two distinct components of release factor function uncovered by nucleophile partitioning analysis. Mol Cell 28: 458–467

    Article  PubMed  CAS  Google Scholar 

  • Shin DH, Brandsen J, Jancarik J, Yokota H, Kim R, Kim SH (2004) Structural analyses of peptide release factor 1 from Thermotoga maritima reveal domain flexibility required for its interaction with the ribosome. J Mol Biol 341: 227–239

    Article  PubMed  CAS  Google Scholar 

  • Spiegel PC, Ermolenko DN, Noller HF (2007) Elongation factor G stabilizes the hybrid-state conformation of the 70S ribosome. RNA 13: 1473–1482

    Article  PubMed  CAS  Google Scholar 

  • Studer SM, Feinberg JS and Joseph S (2007) Rapid kinetic analysis of EF-G-dependent mRNA translocation in the ribosome. J Mol Biol 327: 369–381

    Article  CAS  Google Scholar 

  • Vestergaard B et al. (2001) Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1. Mol Cell 8: 1375–1382

    Article  PubMed  CAS  Google Scholar 

  • Vestergaard B et al. (2005) The SAXS solution structure of RF1 differs from its crystal structure and is similar to its ribosome bound cryo-EM structure. Mol Cell 20: 929–938

    Article  PubMed  CAS  Google Scholar 

  • Weixlbaumer A, Jin H, Neubauer C, Voorhees RM, Petry S, Kelley AC, Ramakrishnan V (2008) Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322: 953–956

    Article  PubMed  CAS  Google Scholar 

  • Youngman EM, He SL, Nikstad LJ, Green R (2007) Stop codon recognition by release factors induces structural rearrangement of the ribosomal decoding center that is productive for peptide release. Mol Cell 28: 533–543

    Article  PubMed  CAS  Google Scholar 

  • Zoldak G, Redecke L, Svergun DI, Konarev PV, Voertler CS, Dobbek H, Sedlak E, Sprinzl M (2007) Release factors 2 from Escherichia coli and Thermus thermophilus: structural, spectroscopic and microcalorimetric studies. Nucleic Acids Res 35: 1343–1353

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Noller, H.F. et al. (2011). Studies on the mechanisms of translocation and termination. In: Rodnina, M.V., Wintermeyer, W., Green, R. (eds) Ribosomes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0215-2_28

Download citation

Publish with us

Policies and ethics