Skip to main content

The Ultrastructure of Giardia During Growth and Differentiation

  • Chapter
Giardia

Abstract

The life cycle of Giardia lamblia is comprised of two developmental stages: trophozoite and cyst. In this chapter, we review the structural organisation of the protozoan during development. The trophozoite displays a pear-shaped appearance, which contains two nuclei, a highly elaborated cytoskeleton made of microtubules and microtubule-associated proteins that assemble in structures, such as the adhesive disc, the median body, the funis and four pairs of flagella. The cytoplasm contains ribosomes, glycogen particles and a network of tubular structures, which are part of the endoplasmic reticulum. This network reaches the more peripheral regions, establishing continuity with peripheral vesicles. The trophozoite cell surface not only contains a coating mainly made of variant surface proteins but also contains some glycoproteins. Two nuclei, containing a central nucleolus, are observed in each trophozoite. Ultrastructural changes take place during protozoan division where an extranuclear spindle is formed, and the adhesive disc participates in the process of karyokinesis. Under certain stimuli, the trophozoites start a process known as encystation, which leads to their transformation into cysts. Significant structural changes take place during this process, involving the appearance of clefts in the endoplasmic reticulum and formation of large encystation vesicles, which migrate towards the cell periphery, fuse with the plasma membrane and release their contents to form the cyst wall. The cyst forms contain two to four nuclei, whilst the disc fragments and the flagella are internalised. During excystation, the parasite leaves the husk and undergoes cytokinesis, forming two new trophozoites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abodeely M, DuBois KN, Hehl A, Stefanic S, Sajid M, De Souza W, Attias M, Engel JC, Hsieh I, Fetter RD, and McKerrow JH (2009) A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia. Eukaryot Cell 8: 1665–1676

    Article  PubMed  CAS  Google Scholar 

  • Adam RD (1991) The biology of Giardia spp. Microbiol Rev 55: 706–732

    PubMed  CAS  Google Scholar 

  • Arguello-Garcia R, Arguello-Lopez C, Gonzalez-Robles A, Castillo-Figueroa AM, and Ortega-Pierres MG (2002) Sequential exposure and assembly of cyst wall filaments on the surface of encysting Giardia duodenalis. Parasitology 125: 209–219

    Article  PubMed  CAS  Google Scholar 

  • Benchimol B, Piva B, Campanati L, and De Souza W (2004) Visualization of the funis of Giardia lamblia by high-resolution field emission scanning electron microscopy — new insights. J Struct Biol 147: 102–115

    Article  PubMed  Google Scholar 

  • Benchimol M (2004a) Behavior of the nuclear envelope in Giardia lamblia. Parasitol Res 94: 254–264

    Article  PubMed  Google Scholar 

  • Benchimol M (2004b) The release of secretory vesicle in encysting Giardia lamblia. FEMS Microbiol Lett 235: 81–87

    Article  PubMed  CAS  Google Scholar 

  • Benchimol M (2005) The nuclei in Giardia lamblia — new ultrastructural observations. Arch Microbiol 183: 62–72

    Article  Google Scholar 

  • Benchimol M (2007) Giardia lamblia under microscopy — how this primitive protist divides. Funct Develop Embryol 1: 1–13

    Google Scholar 

  • Bingham AK, Jarroll EL Jr, Meyer EA, and Radulescu S (1979) Giardia sp.: physical factors of excystation in vitro, and excystation vs eosin exclusion as determinants of viability. Exp Parasitol 47: 284–291

    Article  PubMed  CAS  Google Scholar 

  • Bittencourt-Silvestre J, Lemgruber L, and De Souza W (2010) Encystation process of Giardia lamblia: morphological and regulatory aspects. Arch Microbiol [Epub ahead of print]

    Google Scholar 

  • Buchel LA, Chochillon C, Gorenflot A, Brugerolle G, Gobert JG, and Savel J (1991) Giardia intestinalis: transmission electron microscopy study of in vitro excystation. C R Seances Soc Biol Fil 185: 69–77

    PubMed  CAS  Google Scholar 

  • Campanati L, Holloschi A, Troester H, Spring H, De Souza W, and Monteiro-Leal LH (2002) Video-microscopy observations of fast dynamic processes in the protozoon Giardia lamblia. Cell Mot Cytosk 51: 213–224

    Article  Google Scholar 

  • Campanati L, Troester H, Monteiro-Leal LH, Spring H, Trendelenburg MF, and De Souza W (2003) Tubulin divesity in trophozoites of Giardia lamblia. Histochem Cell Biol 119: 323–331

    PubMed  CAS  Google Scholar 

  • Carvalho KP and Monteiro-Leal LH (2004) The caudal complex of Giardia lamblia and its relation to motility. Exp Parasitol 108: 154–162

    Article  PubMed  CAS  Google Scholar 

  • Castillo-Romero A, Leon-Avila G, Rangel AP, Zarate RC, Tovar CG, and Hernandez JM (2009) Participation of actin on Giardia lamblia growth and encystation. PLoS One 4: e7156

    Article  PubMed  Google Scholar 

  • Chavez B and Martinez-Palomo A (1995) Giardia lamblia: freeze-fracture ultrastructure of the ventral disk plasma membrane. J Eukaryot Microbiol 42: 136–141

    Article  PubMed  CAS  Google Scholar 

  • Cheissin EM (1964) Ultrastructure of Lamblia duodenalis. I. Body surface, sucking disc and median bodies. J Protozool 11: 91–98

    PubMed  CAS  Google Scholar 

  • Clark JT and Holberton DV (1988) Triton-labile antigens in flagella isolated from Giardia lamblia. Parasitol Res 74: 415–423

    Article  PubMed  CAS  Google Scholar 

  • Coggins JR and Schaefer FW 3rd (1984) Giardia muris: scanning electron microscopy of in vitro excystation. Exp Parasitol 57: 62–67

    Article  PubMed  CAS  Google Scholar 

  • Correa G and Benchimol M (2006) Giardia lamblia behavior under cytochalasins treatment. Parasitol Res 98: 250–256

    Article  PubMed  Google Scholar 

  • Correa G, Diaz JM, and Benchimol M (2004) Centrin in Giardia lamblia-ultrastructural localization. FEMS 233: 91–96

    Article  CAS  Google Scholar 

  • Crossley R, Marshall J, Clark JT, and Holberton DV (1986) Immunocytochemical differentiation of microtubules in the cytoskeleton of Giardia lamblia using monoclonal antibodies to alpha-tubulin and polyclonal antibodies to associated low molecular weight proteins. J Cell Sci 80: 233–252

    PubMed  CAS  Google Scholar 

  • Dawson SC, Sagolla MS, Mancuso JJ, Woessner DJ, House SA, Fritz-Laylin L, and Cande WZ (2007) Kinesin-13 regulates flagellar, interphase, and mitoric microtubule dynamics in Giardia intestinalis. Eukaryot Cell 6: 2354–2364

    Article  PubMed  CAS  Google Scholar 

  • De Souza W, Lanfedi-Rangel A, and Campanati L (2004) Contribution of microscopy to a better knowledge of the biology of Giardia lamblia. Microscop Microanal 10: 513–527

    Google Scholar 

  • De Souza W, Sant’Anna C, and Cunha-e-Silva NL (2009) Electron microscopy and cytochemistry analysis of the endocytic pathway of pathogenic protozoa. Prog Histochem Cytochem 44: 67–124

    Article  PubMed  Google Scholar 

  • Drouin G, Moniz de Sá M, and Zuker M (1995) The Giardia lamblia actin gene and the phylogeny of eukaryotes. J Mol Evol 41: 841–849

    Article  PubMed  CAS  Google Scholar 

  • Erlandsen SL and Feely DE (1984) Giardia and Giardiasis. Trophozoite motility and the mechanism of attachment. In: Giardia and Giardiasis pathogenesis and epidemiology (S.L. Erlandsen and E.A. Meyer, eds.). Plenum Press, New York, pp 33–60

    Google Scholar 

  • Erlandsen SL and Rasch E (1994) The DNA content of trophozoites and cysts of Giardia lamblia by microdensitometric quantitation of Feulgen staining and examination by laser scanning confocal microscopy. J Histochem Cytochem 42: 1413–1416

    Article  PubMed  CAS  Google Scholar 

  • Erlandsen SL, Berrick WJ, Schupp DE, Shields JM, Jarrol EL, Sauch JF, and Pawley JB (1990) High-resolution immunogold localization of Giardia cyst wall antigens using field emission SEM with secondary and backscatter electron imaging. J Histochem Cytochem 38: 625–632

    Article  PubMed  CAS  Google Scholar 

  • Erlandsen SL, Macechko PT, Van Keulen H, and Jarrol EL (1996) Formation of Giardia cyst wall: studies on extracellular assembly using immunogold labeling and high resolution field emission SEM. J Eukaryot Microbiol 43: 416–429

    Article  PubMed  CAS  Google Scholar 

  • Feely DE and Dyer JK (1987) Localization of acid phosphatase activity in Giardia lamblia and Giardia muris trofozoites. J Protozool 34: 80–83

    PubMed  CAS  Google Scholar 

  • Feely DE and Erlandsen SL (1982) Effect of cytochalasin-B, low Ca++ concentration, iodoacetic acid, and quinacrine-HCl on the attachment of Giardia trophozoites in vitro. J Parasitol 68: 869–873

    Article  PubMed  CAS  Google Scholar 

  • Filice FP (1952) Studies on the cytology and life history of a Giardia from the laboratory rat. Univ Calif Publ Zool 57: 53–146

    Google Scholar 

  • Friend DS (1966) The fine structure of Giardia muris. J Cell Biol 29: 317–332

    Article  PubMed  CAS  Google Scholar 

  • Gerwig GJ, Van Kuik JA, Leeflang BR, Kamerling JP, Vliegenthart JF, Karr CD, and Jarroll EL (2002) The Giardia intestinalis filamentous cyst wall contains a novel beta-1-3-N-acetyl-D-galactosamine polymer: a structural and conformational study. Glycobiology 12: 499–505

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Frisardi M, Rogers R, and Samuelson J (2001) How Giardia swim and divide. Infect Immunol 69: 7866–7872

    Article  CAS  Google Scholar 

  • Gillin FD, Boucher SE, Rossi SS, and Reiner DS (1989) Giardia lamblia: the roles of bile, lactic acid, and pH in the completion of the life cycle in vitro. Exp Parasitol 69: 164–174

    Article  PubMed  CAS  Google Scholar 

  • Gillin FD, Reiner DS, and McCaffery M (1991) Organelles of protein transport in Giardia lamblia. Parasitol Today 7: 113–116

    Article  PubMed  CAS  Google Scholar 

  • Gillin FD, Reiner DS, and McCaffery JM (1996) Cell biology of the primitive eukaryote Giardia lamblia. Annu Rev Microbiol 50: 679–705

    Article  PubMed  CAS  Google Scholar 

  • Hernandez Y, Castillo C, Roychowdhury S, Hehl A, Aley SB, and Das S (2007) Clathrin-dependent pathways and the cytoskeleton network are involved in ceramide endocytosis by a paratic protozoan, Giardia lamblia. Int J Parasitol 37: 21–32

    Article  PubMed  CAS  Google Scholar 

  • Holberton DV (1973) Fine structure of the ventral disk apparatus and the mechanism of attachment in the flagellate Giardia muris. J Cell Sci 13: 11–41

    PubMed  CAS  Google Scholar 

  • Holberton DV (1981) Arrangement of subunits in microribbons from Giardia. J Cell Sci 47: 167–185

    PubMed  CAS  Google Scholar 

  • Holberton DV and Ward AP (1981) Isolation of the cytoskeleton from Giardia. Tubulin and a low-molecular-weight protein associated with microribbon structures. Cell Sci 47: 139–166

    CAS  Google Scholar 

  • Jiménez-GarcÍa LF, Zavala G, Chávez-MunguÍa B, Ramos-GodÍnez Mdel P, López-Velázquez G, Segura-Valdez Mde L, Montañez C, Hehl AB, Argüello-GarcÍa R, and Ortega-Pierres G (2008) Identification of nucleoli in the early branching protist Giardia duodenalis. Int J Parasitol 38: 1297–1304

    Article  PubMed  Google Scholar 

  • Kabnick KS and Peattie DA (1990) In situ analyses reveal that the two nuclei of Giardia lamblia are equivalent. J Cell Sci 95: 353–360

    PubMed  Google Scholar 

  • Katelaris PH, Naeem A, and Farthing MJ (1995) Attachment of Giardia lamblia trophozoites to a cultured human intestinal cell line. Gut 37: 512–518

    Article  PubMed  CAS  Google Scholar 

  • Kattenbach WM, Pimenta PFP, De Souza W, and Pinto da Silva P (1991) Giardia duodenalis: a freeze-fracture, fracture-flip and cytochemistry study. Parasitol Res 77: 651–658

    Article  PubMed  CAS  Google Scholar 

  • Kattenbach WM, Diniz-Junior JA, Benchimol M, and De Souza W (1996) A deep-etch study of the cytoskeleton of Giardia duodenalis. Biol Cell 86: 161–166

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Sim S, Song K, Yong TS, and Park SJ (2008) Giardia lamblia EB1 is a functional homolog of yeast Bim1p that binds to microtubules. Parasitol Int 57: 465–471

    Article  PubMed  CAS  Google Scholar 

  • Kulda J and Nohýnková E (1978) Flagellates of the human intestine and of intestines of other species. In: Parasitic protozoa. Intestinal flagellates: histomonads, trichomonads, amoeba, opalinids, and ciliates (J.P. Kreier, ed.), Vol. II. Academic Press, New York, pp 2–139

    Google Scholar 

  • Kulda J and Nohýnková E (1995) Giardia in humans and animals. In: Parasitic protozoa (J.P. Kreier, ed.). Academic Press, San Diego, pp 225–422

    Google Scholar 

  • Ladeira RB, Freitas MA, Silva EF, Gontijo NF, and Gomes MA (2005) Glycogen as a carbohydrate energy reserve in trophozoites of Giardia lamblia. Parasitol Res 96: 418–421

    Article  PubMed  Google Scholar 

  • Lanfredi-Rangel A, Attias M, Carvalho TMU, Kattenbach WM, and De Souza W (1998) The peripheral vesicles of trophozoites of the primitive protozoan Giardia lamblia may correspond to early and late endosomes and to lysossomes. J Struct Biol 123: 225–235

    Article  PubMed  CAS  Google Scholar 

  • Lanfredi-Rangel A, Kattenbach WM, Diniz JA Jr, and De Souza W (1999) Trophozoites of Giardia lamblia may have a Golgi-like structure. FEMS Microbiol Lett 181: 245–251

    Article  PubMed  CAS  Google Scholar 

  • Lanfredi-Rangel A, Attias M, Reiner DS, Gillin FB, and De Souza W (2003) Fine structrue of the biogenesis of Giardia lamblia encystation secretory vesicles. J Struct Biol 143: 153–163

    Article  PubMed  CAS  Google Scholar 

  • Lev B, Hard H, Keusch GT, and Pereira MEA (1986) Lectin activation in Giardia lamblia by host protease: a novel hostparasite interaction. Science 232: 71–73

    Article  PubMed  CAS  Google Scholar 

  • Lujan HD, Mowatt MR, and Nash TE (1996) Lipid requirements and lipid uptake by Giardia lamblia trophozoites in culture. J Eukaryot Microbiol 43: 237–242

    Article  PubMed  CAS  Google Scholar 

  • Lujan HD, Mowatt MR, and Nash TE (1998) The molecular mechanisms of Giardia encystation. Parasitol Today 14: 446–450

    Article  PubMed  CAS  Google Scholar 

  • Manning P, Erlandsen SL, and Jarroll EL (1992) Carbohydrate and amino acid analyses of Giardia muris cysts. J Protozool 39: 290–296

    PubMed  CAS  Google Scholar 

  • Marti M and Hehl AB (2003) Encystation-specific vesicles in Giardia: a primordial Golgi or just another secretory compartment? Trends Parasitol 19: 440–446

    Article  PubMed  Google Scholar 

  • Meng TC, Hetsko ML, and Gillin FD (1996) Inhibition of Giardia lamblia excystation by antibodies against cyst walls and by wheat germ agglutinin. Infect Immun 64: 2151–2157. PMID: 8675320

    PubMed  CAS  Google Scholar 

  • Midlej V and Benchimol M (2009) Giardia lamblia behavior during encystment: how morphologial changes in shape occur. Parasitol Int 58: 72–80

    Article  PubMed  Google Scholar 

  • Narcisi EM, Paulin JF, and Fechheimer M (1994) Presence and localization of vinculin in Giardia. J Parasitol 80: 468–473

    Article  PubMed  CAS  Google Scholar 

  • Nohýnková E, Draber P, Reischig J, and Kulda J (2000) Localization of gamma-tubulin in interphase and mitotic cells of a unicellular eukaryote, Giardia intestinalis. Eur J Cell Biol 79: 438–445

    Article  PubMed  Google Scholar 

  • Nohýnková E, Tumová P, and Kulda J (2006) Cell division of Giardia intestinalis: flagellar developmental cycle involves transformation and exchange of flagella between mastigonts of a diplomonad cell. Euk Cell 5: 753–761

    Article  Google Scholar 

  • Palm D, Weiland M, McArthur AG, Winiecka-Krusnell J, Cipriano MJ, Birkeland SR, Pacocha SE, Davids B, Gillin F, Linder E, and Svärd S (2005) Developmental changes in the adhesive disk during Giardia differentiation. Mol Biochem Parasitol 141: 199–207

    Article  PubMed  CAS  Google Scholar 

  • Pathuri P, Nguyen ET, Ozorowski G, Svärd SG, and Luecke H (2009) Apo and calcium-bound crystal structures of cytoskeletal protein alpha-14 giardin (annexin E1) from the intestinal protozoan parasite Giardia lamblia. J Mol Biol 30: 1098–1112

    Article  Google Scholar 

  • Pimenta PFP, Da Silva PP, and Nash T (1991) Variant surface antigens of Giardia lamblia are associated with the presence of a thick cell coat: thin section and label fracture immunocytochemistry survey. Infect Immun 59: 3989–3996

    PubMed  CAS  Google Scholar 

  • Piva B and Benchimol M (2004) The median body of Giardia lamblia: an ultrastructural study. Biol Cell 96: 735–746

    Article  PubMed  Google Scholar 

  • Prucca CG and Lujan HD (2009) Antigenic variation in Giardia lamblia. Cell Microbiol 11: 1706–1715

    Article  PubMed  CAS  Google Scholar 

  • Reiner DS, McCaffery M, and Gillin FD (1990) Sorting of cyst wall proteins to a regulated secretory pathway during differentiation of the primitive eukaryote, Giardia lamblia. Eur J Cell Biol 53: 142–153

    PubMed  CAS  Google Scholar 

  • Sagolla MS, Dawson SC, Mancuso JJ, and Cande WZ (2006) Three-dimensional analysis of mitosis and cytokinesis in the binucleate parasite Giardia intestinalis. J Cell Sci 119: 4889–4900

    Article  PubMed  CAS  Google Scholar 

  • Sant’Anna C, Campanati L, Gadelha C, Lourenço D, Labati-Terra L, Bittencourt-Silvestre J, Benchimol M, Cunha-e-Silva NL, and De Souza W (2005) Improvement on the visualization of cytoskeletal structures of protozoan parasites using high-resolution field emission scanning electron microscopy (FESEM). Histochem Cell Biol 124: 87–95

    Article  CAS  Google Scholar 

  • Saric M, Vahrmann A, Niebur D, Kluempers V, Hehl AB, and Scholze H (2009) Dual acylation accounts for the localization of {alpha}19-giardin in the ventral flagellum pair of Giardia lamblia. Eukaryot Cell 8: 1567–1574

    Article  PubMed  CAS  Google Scholar 

  • Slavin I, Saura A, Carranza PG, Touz MC, Nores MJ, and Lújan HD (2002) Dephosphorylation of cyst wall proteins by a secreted lysosomal acid phosphatase is essential for excystation of Giardia lamblia. Mol Biochem Parasitol 122: 95–98

    Article  PubMed  CAS  Google Scholar 

  • Sogayar MF and Gregorio EA (1989) Uptake of bacteria by trophozoites of Giardia duodenalis (Say). Ann Trop Med Paasitol 83: 63–66

    CAS  Google Scholar 

  • Solari AJ, Rahn MI, Saura A, and Lujan HD (2003) A unique mechanism of nuclear division in Giardia lamblia involves components of the ventral disk and the nuclear envelope. Biocell 27: 329–346

    PubMed  Google Scholar 

  • Soltys BJ and Gupta RS (1994) Immunoelectron microscopy of Giardia lamblia cytoskeleton using antibody to acetylated alpha-tubulin. J Euk Microbiol 41: 625–632

    Article  PubMed  CAS  Google Scholar 

  • Souza MC, Gonçalves CA, Bairos VA, and da Silva JP (2001) Adherence of Giardia lamblia trophozoites to Int-407 human intestinal cells. Clin Diag Lab Immunol 8: 258–265

    Google Scholar 

  • Sreenivs K, Ganguly NK, Ghosh S, Sehgal R, and Mahajan RC (1995) Identification of a 148 kDa surface lectin from Giardia lamblia with specificity for alpha-methyl-D-mannoside. FEMS Microbiol 134: 33–37

    Google Scholar 

  • Tian XF, Yang ZH, Shen H, Adam RD, and Lu SQ (2010) Identification of the nucleoli of Giardia lamblia with TEM and CFM. Parasitol Res [Epub ahead of print]

    Google Scholar 

  • Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, van der Giezen M, Hernandez M, Muller M, and Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426: 172–176

    Article  PubMed  CAS  Google Scholar 

  • Vahrmann A, Saric M, Koebsch I, and Scholze H (2008) Alpha14-Giardin (annexin E1) is associated with tubulin in trophozoites of Giardia lamblia and forms local slubs in the flagella. Parasitol Res 102: 321–326

    Article  PubMed  CAS  Google Scholar 

  • Ward HD, Lev BI, Kane AV, Keusch GT, and Pereira MEA (1987) Identification and characterization of taglin, a mannose-6-phosphate binding, trypsin-activated lectin from Giardia lamblia. Biochemistry 26: 8669–8675

    Article  PubMed  CAS  Google Scholar 

  • Ward HD, Alroy J, Lev BI, Keusch GT, and Pereira MEA (1988) Biology of Giardia lamblia. Detection of N-acetuyl-D-glucosamine as the only surface saccharide moiety and identification of two distinct subsets of trophozoites by lectin binding. J Exp Med 167: 73–88

    Article  PubMed  CAS  Google Scholar 

  • Ward W, Alvarado L, Rawlings ND, Engel JC, Franklin C, and McKerrow JH (1997) A primitive enzyme for a primitive cell: the protease required for excystation of Giardia. Cell 89: 437–444

    Article  PubMed  CAS  Google Scholar 

  • Weiland ME, McArthur AG, Morrison HG, Sogin M, and Svard SG (2005) Annexin-like alpha giardins: a new cytoskeleton gene family in Giardia lamblia. Int J Parasitol 35: 617–626

    Article  PubMed  CAS  Google Scholar 

  • Wiesehahn GP, Jarrol EL, Lindmark DG, Meyer EA, and Hallick LM (1984) Giardia lamblia: autoradiographic analysis of nuclear division. Exp Parasitol 58: 94–100

    Article  PubMed  CAS  Google Scholar 

  • Yu LZ, Birky WC Jr, and Adam RD (2002) The two nuclei of Giardia each have complete copies of the genome and are partitioned equationally at cytokinesis. Eukaryot Cell 1: 191–199

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Benchimol, M., De Souza, W. (2011). The Ultrastructure of Giardia During Growth and Differentiation. In: Luján, H.D., Svärd, S. (eds) Giardia. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0198-8_9

Download citation

Publish with us

Policies and ethics