Skip to main content

Mass Spectrometric Analysis of Phospholipids and Fatty Acids in Giardia lamblia

  • Chapter
Giardia

Abstract

In addition to plasma membrane, Giardia lamblia contains numerous membrane-enveloped, primitive organelles, which house a variety of metabolic processes. It has been proposed earlier that this intestinal pathogen lacks the ability to synthesize the majority of its own lipids de novo and depends on supplies from outside sources. Therefore, the questions as to how this ancient eukaryote utilizes exogenous lipids and synthesizes membranes and organelles are extremely important. Does this parasite depend predominantly on remodeling pathways, in which exogenous phospholipids undergo fatty acid and headgroup replacement reactions to generate new phospholipids? To answer this, and to better understand the overall pathway, we carried out a complete lipidomic analysis using electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOF-MS). The results suggest that Giardia has the ability to generate new phospholipids de novo, most likely via the remodeling pathways. Among the newly synthesized lipids, phosphatidylglycerol (PG) is the major phospholipid followed by phosphatidylethanolamine (PE). Gas chromatography-mass spectrometry (GC-MS) ana lyses indicated that Giardia also has the ability to remodel fatty acids by chain elongation and desaturation reactions. Thus, mass spectrometric analyses provided valuable information about lipid biosynthesis by Giardia and opened the possibility of investigating in greater detail the uptake and utilization of exogenous lipids for the synthesis of membranes and organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almeida IC, Camargo MM, et al. (2000) Highly purified glycosylphosphatidylinositols from Trypanosoma cruzi are potent proinflammatory agents. EMBO J 19(7): 1476–1485

    Article  PubMed  CAS  Google Scholar 

  • Blair RJ and Weller PF (1987) Uptake and esterification of arachidonic acid by trophozoites of Giardia lamblia. Mol Biochem Parasitol 25(1): 11–18

    Article  PubMed  CAS  Google Scholar 

  • Castillo-Romero A, Leon-Avila G, et al. (2009) Participation of actin on Giardia lamblia growth and encystation. PLoS One 4(9): e7156

    Article  PubMed  Google Scholar 

  • Cox SS, van der Giezen M, et al. (2006) Evidence from bioinformatics, expression and inhibition studies of phosphoinositide-3 kinase signalling in Giardia intestinalis. BMC Microbiol 6: 45

    Article  PubMed  Google Scholar 

  • Das S, Castillo C, et al. (2001) Phospholipid remodeling/generation in Giardia: the role of the Lands cycle. Trends Parasitol 17(7): 316–319

    Article  PubMed  CAS  Google Scholar 

  • Das S, Reiner DS, et al. (1988) Killing of Giardia lamblia trophozoites by human intestinal fluid in vitro. J Infect Dis 157(6): 1257–1260

    Article  PubMed  CAS  Google Scholar 

  • Das S, Schteingart CD, et al. (1997) Giardia lamblia: evidence for carrier-mediated uptake and release of conjugated bile acids. Exp Parasitol 87(2): 133–141

    Article  PubMed  CAS  Google Scholar 

  • Das S, Stevens TL, et al. (2002) Lipid metabolism in mucous-dwelling amitochondriate protozoa. Int J for Parasitol 32(6): 655–675

    Article  CAS  Google Scholar 

  • Das S, Traynor-Kaplan A, et al. (1991) A surface antigen of Giardia lamblia with a glycosylphosphatidylinositol anchor. J Biol Chem 266(31): 21318–21325

    PubMed  CAS  Google Scholar 

  • Diamond LS, Harlow DR, et al. (1978) A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Trans R Soc Trop Med Hyg 72(4): 431–432

    Article  PubMed  CAS  Google Scholar 

  • Dolis D, Moreau C, et al. (1997) Aminophospholipid translocase and proteins involved in transmembrane phospholipid traffic. Biophys Chem 68(1–3): 221–231

    Article  PubMed  CAS  Google Scholar 

  • Ellis JE, Wyder MA, et al. (1996) Changes in lipid composition during in vitro encystation and fatty acid desaturase activity of Giardia lamblia. Mol Biochem Parasitol 81(1): 13–25

    Article  PubMed  CAS  Google Scholar 

  • Farthing MJ, Chong SK, et al. (1983) Acute allergic phenomena in giardiasis. Lancet 2(8364): 1428

    Article  PubMed  CAS  Google Scholar 

  • Farthing MJ, Keusch GT, et al. (1985) Effects of bile and bile salts on growth and membrane lipid uptake by Giardia lamblia. Possible implications for pathogenesis of intestinal disease. J Clin Invest 76(5): 1727–1732

    Article  PubMed  CAS  Google Scholar 

  • Fridberg A, Olson CL, et al. (2008) Sphingolipid synthesis is necessary for kinetoplast segregation and cytokinesis in Trypanosoma brucei. J Cell Sci 121(Pt 4): 522–535

    Article  PubMed  CAS  Google Scholar 

  • Gibson GR, Ramirez D, et al. (1999) Giardia lamblia: incorporation of free and conjugated fatty acids into glycerol-based phospholipids. Exp Parasitol 92(1): 1–11

    Article  PubMed  CAS  Google Scholar 

  • Gillin FD, Boucher SE, et al. (1989) Giardia lamblia: the roles of bile, lactic acid and pH in the completion of the life cycle in vitro. Exp Parasitol 69(2): 164–174

    Article  PubMed  CAS  Google Scholar 

  • Gillin FD, Gault MJ, et al. (1986) Biliary lipids support serum-free growth of Giardia lamblia. Infect Immun 53(3): 641–645

    PubMed  CAS  Google Scholar 

  • Gillin FD, Reiner DS, et al. (1987) Encystation and expression of cyst antigens by Giardia lamblia in vitro. Science 235(4792): 1040–1043

    Article  PubMed  CAS  Google Scholar 

  • Hegner R and Eskridge L (1938) Localization of Giardia muris in rats. J Parasitol 24(6): 511–515

    Article  Google Scholar 

  • Hernandez Y, Castillo C, et al. (2007) Clathrin-dependent pathways and the cytoskeleton network are involved in ceramide endocytosis by a parasitic protozoan, Giardia lamblia. IntJ Parasitol 37(1): 21–32

    Article  CAS  Google Scholar 

  • Hernandez Y, Shpak M, et al. (2008) Novel role of sphingolipid synthesis genes in regulating giardial encystation. Infect and Immun 76(7): 2939–2949

    Article  CAS  Google Scholar 

  • Hernandez Y, Zamora G, et al. (2007) Transcriptional analysis of three major putative phosphatidylinositol kinase genes in a parasitic protozoan, Giardia lamblia. J Eukaryot Microbiol 54(1): 29–32

    Article  PubMed  CAS  Google Scholar 

  • Jarroll EL, Manning P, et al. (1989) Giardia cyst wall-specific carbohydrate: evidence for the presence of galactosamine. Molecular and Biochemical Parasitology 32(2–3): 121–131

    Article  PubMed  CAS  Google Scholar 

  • Jarroll EL, Muller PJ, et al. (1981) Lipid and carbohydrate metabolism in Giardia lamblia. Mol Biochem Parasitol 2(3–4): 187–196

    Article  PubMed  CAS  Google Scholar 

  • Kane A, Ward HD, et al. (1991) In vitro encystation of Giardia lamblia: large-scale production of in vitro cysts and strain and clone differences in encystation efficiency. J Parasitol 77(6): 974–981

    Article  PubMed  CAS  Google Scholar 

  • Kaneda Y and Goutsu T (1988) Lipid analysis of Giardia lamblia and its culture medium. Ann Trop Medi Parasitol 82(1): 83–90

    CAS  Google Scholar 

  • Keister D (1983) Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77(4): 487–488

    Article  PubMed  CAS  Google Scholar 

  • Kent C (1995) Eukaryotic phospholipid biosynthesis. Annu Rev Biochem. 64: 315–343

    Article  PubMed  CAS  Google Scholar 

  • Maldonado RA, Kuniyoshi RK, et al. (2006) Trypanosoma cruzi oleate desaturase: molecular characterization and comparative analysis in other trypanosomatids. J Parasitol 92(5): 1064–1074

    Article  PubMed  CAS  Google Scholar 

  • Mohareb EW, Rogers EJ, et al. (1991) Giardia lamblia: phospholipid analysis of human isolates. Ann Trop Med Parasitol 85(6): 591–597

    PubMed  CAS  Google Scholar 

  • Morgan CP, Insall R, et al. (2004) Identification of phospholipase B from dictyostelium discoideum reveals a new lipase family present in mammals, flies and nematodes, but not yeast. Biochem J 382 (Pt 2): 441–449

    Article  PubMed  CAS  Google Scholar 

  • Morrison HG, McArthur AG, et al. (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317(5846): 1921–1926

    Article  PubMed  CAS  Google Scholar 

  • Morrison HG, Zamora G, et al. (2002) Inferring protein fuction from genomic sequence: Giardia lamblia expresses a phosphatidylinositol kinase-related kinase similar to yeast and mammalian TOR. Comp Biochem Physiol 133(4): 477–491

    Article  Google Scholar 

  • Mukherjee S, Ghosh RN, et al. (1997) Endocytosis. Physiol Rev 77(3): 759–803

    PubMed  CAS  Google Scholar 

  • Nichols BJ and Lippincott-Schwartz J (2001) Endocytosis without clathrin coats. Trends Cell Biol 11(10): 406–412

    Article  PubMed  CAS  Google Scholar 

  • Pagano RE and Sleight RG (1985) Defining lipid transport pathways in animal cells. Science 229(4718): 1051–1057

    Article  PubMed  CAS  Google Scholar 

  • Pernet F, Pelletier CJ, et al. (2006) Comparison of three solidphase extraction methods for fatty acid analysis of lipid fractions in tissues of marine bivalves. J Chromatogr A 1137(2): 127–137

    Article  PubMed  CAS  Google Scholar 

  • Pulfer M and Murphy RC (2003) Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 22(5): 332–364

    Article  PubMed  CAS  Google Scholar 

  • Soltys BJ, Falah M, et al. (1996) Identification of endoplasmic reticulum in the primitive eukaryote Giardia lamblia using cryoelectron microscopy and antibody to Bip. J Cell Sci 109(Pt 7): 1909–1917

    PubMed  CAS  Google Scholar 

  • Stevens TL, Gibson GR, et al. (1997) Uptake and cellular localization of exogenous lipids by Giardia lamblia, a primitive eukaryote. Exp parasitol 86(2): 133–143

    Article  PubMed  CAS  Google Scholar 

  • Subramanian AB, Navarro S, et al. (2000) Role of exogenous inositol and phosphatidylinositol in glycosylphosphatidylinositol anchor synthesis of GP49 by Giardia lamblia. Biochim Biophys Acta 1483(1): 69–80

    Article  PubMed  CAS  Google Scholar 

  • van Meer G and Op den Kamp JA (1982) Transbilayer movement of various phosphatidylcholine species in intact human erythrocytes. J Cell Biochem 19(2): 193–204

    Article  PubMed  Google Scholar 

  • Vargas-Villarreal J, Escobedo-Guajardo BL et al. (2007) Activity of intracellular phospholipase A1 and A2 in Giardia lamblia. J Parasitol 93(5): 979–984

    Article  PubMed  CAS  Google Scholar 

  • Yichoy M, Nakayasu ES, et al. (2009) Lipidomic analysis reveals that phosphatidylglycerol and phosphatidylethanolamine are newly generated phospholipids in an early-divergent protozoan, Giardia lamblia. Mol Biochem Parasitol 165(1) 67–78

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Yichoy, M., Nakayasu, E.S., De Chatterjee, A., Aley, S.B., Almeida, I.C., Das, S. (2011). Mass Spectrometric Analysis of Phospholipids and Fatty Acids in Giardia lamblia . In: Luján, H.D., Svärd, S. (eds) Giardia. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0198-8_7

Download citation

Publish with us

Policies and ethics