Skip to main content

The Glycoproteins of Giardia

  • Chapter
Giardia

Abstract

Glycoprotein structures are remarkably simple in Giardia. This protist produces the shortest Asn-linked glycan (N-glycan) yet described: two N-acetyl-glucosamines (GlcNAc2). The oligosaccharyltransferase (OST) that transfers N-glycans to the peptide has a single catalytic subunit in Giardia but contains four to eight subunits in most eukaryotes. Giardia is missing the ER proteins involved in N-glycan-dependent quality conrol (QC) of protein folding and degradation. There is Darwinian selection for the sites of N-glycan in secreted proteins of eukaryotes with N-glycan-dependent QC, but there is no such selection in Giardia and other protists lacking N-glycan-dependent QC. The glycosylphosphatidylinositol (GPI) anchor of Giardia is predicted to be the simplest of any eukaryote. UDP-GlcNAc is the only nucleotide sugar transported from the cytosol to the lumen of the ER. By contrast, Giardia is one of the rare protists that use GlcNAc to modify Ser and Thr residues on nucleocytosolic proteins. WGA affinity dramatically enriches glycoproteins of Giardia, many of which are unique or are encystation specific. In summary, GlcNAc is the major sugar added to Giardia glycoproteins, which are much less complex than those of the host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aurrecoechea C, Brestelli J, Brunk BP, Carlton JM, Dommer J, Fischer S, et al. (2009) GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis. Nucleic Acids Res 37: D526–D530

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Vishwanath P, Cui J, Kelleher DJ, Gilmore R, Robbins PW, and Samuelson J (2007) Evolution of quality control of protein-folding in the ER lumen. Proc Natl Acad Sci USA 104: 11676–11681

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Cui J, Robbins PW, and Samuelson J (2008) Use of Giardia, which appears to have a single nucleotide-sugar transporter for UDP-GlcNAc, to identify the UDP-Glc transporter of Entamoeba. Mol Biochem Parasitol 159: 44–53

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Robbins PW, and Samuelson J (2009) Molecular characterization of nucleocytosolic O-GlcNAc transferases of Giardia lamblia and Cryptosporidium parvum. Glycobiology 19: 331–336

    Article  PubMed  CAS  Google Scholar 

  • Breuer W, Klein RA, Hardt B, Bartoschek A, and Bause E (2001) Oligosaccharyltransferase is highly specific for the hydroxy amino acid in Asn-Xaa-Thr/Ser. FEBS Lett 501: 106–110

    Article  PubMed  CAS  Google Scholar 

  • Bushkin GG, Ratner DM, Cui J, Banerjee S, Duraisingh MT, Jennings CV, Dvorin JD, Gubbels M-J, Robertson SD, Steffen M, O’Keefe BR, Robbins PW, and Samuelson J (2010) Suggestive evidence for Darwinian selection against asparagine-linked glycans of Plasmodium and Toxoplasma. Eukaryot Cell 9: 228–241

    Article  PubMed  CAS  Google Scholar 

  • Caffaro CE and Hirschberg CB (2006) Nucleotide sugar transporters of the Golgi apparatus: from basic science to diseases. Acc Chem Res 39: 805–812

    Article  PubMed  CAS  Google Scholar 

  • Caffaro CE, Luhn K, Bakker H, Vestweber D, Samuelson J, Berninsone P, and Hirschberg CB (2008) A single Caenorhabditis elegans Golgi apparatus-type transporter of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, and UDP-N-acetylgalactosamine. Biochemistry 47: 4337–4344

    Article  PubMed  CAS  Google Scholar 

  • Carpenter ML and Cande WZ (2009) Using morpholinos for gene knockdown in Giardia intestinalis. Eukaryot Cell 8: 916–919

    Article  PubMed  CAS  Google Scholar 

  • Cui J, Smith T, Robbins PW, and Samuelson J (2009) Darwinian selection for sites of Asn-liked glycosylation in phylogenetically disparate eukaryotes and viruses. Proc Natl Acad Sci USA 106: 13421–13426

    Article  PubMed  CAS  Google Scholar 

  • Daniels R, Kurowski B, Johnson AE, and Hebert DN (2003) N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol Cell 11: 79–90

    Article  PubMed  CAS  Google Scholar 

  • Das S, Traynor-Kaplan A, Reiner DS, Meng TC, and Gillin FD (1991) A surface antigen of Giardia lamblia with a glycosylphosphatidylinositol anchor. J Biol Chem 266: 21318–21325

    PubMed  CAS  Google Scholar 

  • Davids BJ, Reiner DS, Birkeland SR, Preheim SP, Cipriano MJ, McArthur AG, and Gillin FD (2006) A new family of giardial cysteine-rich non-VSP protein genes and a novel cyst protein. PLoS One 1: e44

    Article  PubMed  Google Scholar 

  • Dawson SC, Sagolla MS, Mancuso JJ, Woessner DJ, House SA, Fritz-Laylin L, and Cande WZ (2007) Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryot Cell 6: 2354–2364

    Article  PubMed  CAS  Google Scholar 

  • Ferguson MAJ, Homans SW, Dwek RA, and Rademacher TW (1988) Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science 239: 753–759

    Article  PubMed  CAS  Google Scholar 

  • Forsythe ME, Love DC, Lazarus BD, Kim EJ, Prinz WA, Ashwell G, Krause MW, and Hanover JA (2006) Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1(O-GlcNAcase) knockout impacts OGlcNAc cycling, metabolism, and dauer. Proc Natl Acad Sci USA 103: 11952–11957

    Article  PubMed  CAS  Google Scholar 

  • Franzén O, Jerlström-Hultqvist J, Castro E, Sherwood E, Ankarklev J, Reiner DS, Palm D, Andersson JO, Andersson B, and Svärd SG (2009) Draft genome sequencing of Giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathog 5: e1000560

    Article  PubMed  Google Scholar 

  • Garenaux E, Shams-Eldin H, Chirat F, Bieker U, Schmidt J, Michalski JC, Cacan R, Guerardel Y, and Schwarz RT (2008) The dual origin of Toxoplasma gondii N-glycans. Biochemistry 47: 12270–12276

    Article  PubMed  CAS  Google Scholar 

  • Gerwig GJ, van Kuik JA, Leeflang, BR, Kamerling JP, Vliegenthart, JF, Karr CD, and Jarroll EL (2002) The Giardia intestinalis filamentous cyst wall contains a novel beta (1-3)-N-acetyl-D-galactosamine polymer: a structural and conformational study. Glycobiology 12: 499–505

    Article  PubMed  CAS  Google Scholar 

  • Grabińska KA, Cui J, Chatterjee A, Guan Z, Raetz CRH, Robbins PW, and Samuelson J (2010) Molecular characterization of the cis-prenyltransferase of Giardia. Glycobiology, in press

    Google Scholar 

  • Hart GW, Housley MP, and Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446: 1017–1022

    Article  PubMed  CAS  Google Scholar 

  • Helenius A and Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73: 1019–1049

    Article  PubMed  CAS  Google Scholar 

  • Karr CD and Jarroll EL (2004) Cyst wall synthase: N-acetylgalactosaminyltransferase activity is induced to form the novel N-acetylgalactosamine polysaccharide in the Giardia cyst wall. Microbiology 150: 1237–1243

    Article  PubMed  CAS  Google Scholar 

  • Kelleher DJ and Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16: 47R–62R

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld R and Kornfeld S (1985) Assembly of aparaginelinked oligosaccharides. Annu Rev Biochem 54: 631–664

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Lin D, and Yates JR 3rd (2002) Multidimensional separations for protein/peptide analysis in the post-genomic era. Biotechniques 32: 898

    PubMed  CAS  Google Scholar 

  • Love DC and Hanover JA (2005) The hexosamine signaling pathway: deciphering the “O-GlcNAc code”. Sci STKE. 2005: re13

    Google Scholar 

  • Luján HD, Marotta A, Mowatt MR, Sciaky N, Lippincott-Schwartz J, and Nash TE (1995) Developmental induction of Golgi structure and function in the primitive eukaryote Giardia lamblia. J Biol Chem 270: 4612–4618

    Article  PubMed  Google Scholar 

  • Magnelli P, Cipollo JF, Ratner DM, Cui J, Kelleher D, Gilmore R, Costello CE, Robbins PW, and Samuelson J (2008) Unique Asn-linked oligosaccharides of the human pathogen Entamoeba histolytica. J Biol Chem 283: 18355–18364

    Article  PubMed  CAS  Google Scholar 

  • Manthri S, Guther ML, Izquierdo L, Acosta-Serrano A, and Ferguson MA (2008) Deletion of the TbALG3 gene demonstrates site-specific N-glycosylation and N-glycan processing in Trypanosoma brucei. Glycobiology 18: 367–383

    Article  PubMed  CAS  Google Scholar 

  • Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GL, et al. (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317: 1921–1926

    Article  PubMed  CAS  Google Scholar 

  • Nasab FP, Schulz BL, Gamarro F, Parodi AJ, and Aebi M (2008) All in one: Leishmania major STT3 proteins substitute for the whole oligosaccharyltransferase complex in Saccharomyces cerevisiae. Mol Biol Cell 19: 3758–3768

    Article  PubMed  CAS  Google Scholar 

  • North SJ, Hitchen PG, Haslam SM, and Dell A (2009) Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr Opin Struct Biol 19: 498–506

    Article  PubMed  CAS  Google Scholar 

  • Orlean P and Menon AK (2007) Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 48: 993–1011

    Article  PubMed  CAS  Google Scholar 

  • Prucca CG, Slavin I, Quiroga R, ElÍas EV, Rivero FD, Saura A, Carranza PG, and Luján HD (2008) Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 456: 750–754

    Article  PubMed  CAS  Google Scholar 

  • Ratner DM, Cui J, Steffen M, Moore LL, Robbins PW, and Samuelson J (2008) Changes in the N-glycome, glycoproteins with Asn-linked glycans, of Giardia lamblia with differentiation from trophozoites to cysts. Eukaryot Cell 7: 1930–1940

    Article  PubMed  CAS  Google Scholar 

  • Samuelson J, Banerjee S, Magnelli P, Cui J, Kelleher DJ, Gilmore R, and Robbins PW (2005) The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc Natl Acad Sci USA 102: 1548–1553

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Sato K, Nishikawa S, Hirata A, Kato J, and Nakano A (1999) The yeast RER2 gene, identified by endoplasmic reticulum protein localization mutations, encodes cisprenyltransferase, a key enzyme in dolichol synthesis. Mol Cell Biol 19: 471–483

    PubMed  CAS  Google Scholar 

  • Stanley P, Schachter H, and Taniguchi N (2008) N-glycans. In: Essentials of glcyobiology (A. Varki, R.D. Cummings, J.D. Esko, H.H. Freeze, P. Stanley, C.R. Bertozzi, G.W. Hart, and M.E. Etzler, eds.), 2nd Edition. New York, Cold Spring Harbor Laboratory Press, pp 101–114

    Google Scholar 

  • Stefanic S, Palm D, Svard SG, and Hehl AB (2006) Organelle proteomics reveals cargo maturation mechanisms associated with Golgi-like encystation vesicles in the early-diverged protozoan Giardia lamblia. J Biol Chem 281: 7595–7604

    Article  PubMed  CAS  Google Scholar 

  • Touz MC, Nores MJ, Slavin I, Carmona C, Conrad JT, Mowatt MR, Nash TE, Coronel CE, and Lujan HD (2002) The activity of a developmentally regulated cysteine proteinase is required for cyst wall formation in the primitive eukaryote Giardia lamblia. J Biol Chem 277: 8474–8481

    Article  PubMed  CAS  Google Scholar 

  • Trombetta ES and Parodi AJ (2003) Quality control and protein folding in the secretory pathway. Annu Rev Cell Dev Biol 19: 649–676

    Article  PubMed  CAS  Google Scholar 

  • Wang T and Hebert DN (2003) EDEM an ER quality control receptor. Nat Struct Biol 10: 319–321

    Article  PubMed  CAS  Google Scholar 

  • Ward W, Alvarado L, Rawlings ND, Engel JC, Franklin C, and McKerrow JH (1997) A primitive enzyme for a primitive cell: the protease required for excystation of Giardia. Cell 89: 437–444

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Ongusaha PP, Miles PD, Havstad JC, Zhang F, So WV, Kudlow JE, Michell RH, Olefsky JM, Field SJ, and Evans RM (2008) Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451: 964–969

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Samuelson, J., Robbins, P.W. (2011). The Glycoproteins of Giardia . In: Luján, H.D., Svärd, S. (eds) Giardia. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0198-8_6

Download citation

Publish with us

Policies and ethics