Skip to main content

Signaling Pathways in Giardia lamblia

  • Chapter
Giardia

Abstract

Giardia trophozoites colonize the ever-changing small intestinal environment and must constantly react to external mucosal signals in order to “decide” whether to multiply and cause disease or to differentiate into cysts. Similarly, upon ingestion, cysts react to stimuli from the new host in order to excyst. Giardia is an excellent model to study signaling because its life cycle can be completed in vitro and genome analyses revealed a limited but broad selection of signaling proteins. Encystation is an entry into dormancy, while excystation is a rapid cellular awakening. Although the stimuli for encystation and excystation are known, understanding of the transduction of these important signals is incomplete. The localization of the various signaling proteins to universal or Giardia-specifi c structures and their redistribution in response to environmental signals will provide insights into their functions in the Giardia cell cycle and differentiation. However, research on signaling proteins and pathways in Giardia is hampered by the lack of specifi c antibodies, substrates, and inhibitors. The most striking fi nding is the very large number of Nek kinases in the Giardia genome. The Neks are promising targets for further studies and their function and regulation will likely disclose more insights into the regulation of Giardia motility, cell, and life cycle. Here, we summarize current published information on Giardia signaling in growth, encystation, and excystation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel ES, Davids BJ, Robles LD, Loflin CE, Gillin FD, and Chakrabarti R (2001) Possible roles of protein kinase A in cell motility and excystation of the early diverging eukaryote Giardia lamblia. J Biol Chem 276: 10320–10329

    Article  PubMed  CAS  Google Scholar 

  • Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14: 447–475

    Article  PubMed  CAS  Google Scholar 

  • Ahn JH, McAvoy T, Rakhilin SV, Nishi A, Greengard P, and Nairn AC (2007) Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56delta subunit. Proc Natl Acad Sci USA 104: 2979–2984

    Article  PubMed  CAS  Google Scholar 

  • Alvarado ME and Wasserman M (2009) Analysis of phosphorylated proteins and inhibition of kinase activity during Giardia intestinalis excystation. Parasitol Int 59: 54–61

    Article  PubMed  Google Scholar 

  • Amazonas JN, Cosentino-Gomes D, Werneck-Lacerda A, Pinheiro AA, Lanfredi-Rangel A, De Souza W, Meyer-Fernandes JR (2009) Giardia lamblia: characterization of ecto-phosphatase activities. Exp Parasitol 121(1): 15–21

    Article  PubMed  CAS  Google Scholar 

  • Anamika K and Srinivasan N (2007) Comparative kinomics of Plasmodium organisms: unity in diversity. Protein Pept Lett 14: 509–517

    Article  PubMed  CAS  Google Scholar 

  • Andreeva AV and Kutuzov MA (2008) Protozoan protein tyrosine phosphatases. Int J Parasitol 38: 1279–1295

    Article  PubMed  CAS  Google Scholar 

  • Arguello-Garcia R, Bazan-Tejeda ML, and Ortega-Pierres G (2009) Encystation commitment in Giardia duodenalis: a long and winding road. Parasite 16: 247–258

    Article  PubMed  CAS  Google Scholar 

  • Bazan-Tejeda ML, Arguello-Garcia R, Bermudez-Cruz RM, Robles-Flores M, and Ortega-Pierres G (2007) Protein kinase C isoforms from Giardia duodenalis: identifi cation and functional characterization of a beta-like molecule during encystment. Arch Microbiol 187: 55–66

    Article  PubMed  CAS  Google Scholar 

  • Best AA, Morrison HG, McArthur AG, Sogin ML, and Olsen GJ (2004) Evolution of eukaryotic transcription: insights from the genome of Giardia lamblia. Genome Res 14: 1537–1547

    Article  PubMed  CAS  Google Scholar 

  • Bingham AK and Meyer EA (1979) Giardia excystation can be induced in vitro in acidic solutions. Nature 277: 301–302

    Article  PubMed  CAS  Google Scholar 

  • Boucher SE and Gillin FD (1990) Excystation of in vitro-derived Giardia lamblia cysts. Infect Immun 58: 3516–3522

    PubMed  CAS  Google Scholar 

  • Bradley BA and Quarmby LM (2005) A NIMA-related kinase, Cnk2p, regulates both fl agellar length and cell size in Chlamydomonas. J Cell Sci 118: 3317–3326

    Article  PubMed  CAS  Google Scholar 

  • Carmena M, Ruchaud S, and Earnshaw WC (2009) Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Curr Opin Cell Biol 21: 796–805

    Article  PubMed  CAS  Google Scholar 

  • Carranza PG and Lujan HD (2010) New insights regarding the biology of Giardia lamblia. Microbes Infect 12: 71–80

    Article  PubMed  CAS  Google Scholar 

  • Cho US and Xu W (2007) Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature 445: 53–57

    Article  PubMed  CAS  Google Scholar 

  • Cox SS, van der Giezen M, Tarr SJ, Crompton MR, and Tovar J (2006) Evidence from bioinformatics, expression and inhibition studies of phosphoinositide-3 kinase signalling in Giardia intestinalis. BMC Microbiol 6: 45

    Article  PubMed  Google Scholar 

  • Davids BJ, Williams S, Lauwaet T, Palanca T, and Gillin FD (2008) Giardia lamblia aurora kinase: a regulator of mitosis in a binucleate parasite. Int J Parasitol 38: 353–369

    Article  PubMed  CAS  Google Scholar 

  • Ellis JGt, Davila M, and Chakrabarti R (2003) Potential involvement of extracellular signal-regulated kinase 1 and 2 in encystation of a primitive eukaryote, Giardia lamblia. Stage-specifi c activation and intracellular localization. J Biol Chem 278: 1936–1945

    Article  PubMed  CAS  Google Scholar 

  • Gibson C, Schanen B, Chakrabarti D, and Chakrabarti R (2006) Functional characterisation of the regulatory subunit of cyclic AMP-dependent protein kinase A homologue of Giardia lamblia: differential expression of the regulatory and catalytic subunits during encystation. Int J Parasitol 36: 791–799

    Article  PubMed  CAS  Google Scholar 

  • Gillin FD, Reiner DS, and Boucher SE (1988) Small-intestinal factors promote encystation of Giardia lamblia in vitro. Infect Immun 56: 705–707

    PubMed  CAS  Google Scholar 

  • Grant KM (2008) Targeting the cell cycle in the pursuit of novel chemotherapies against parasitic protozoa. Curr Pharm Des 14: 917–924

    Article  PubMed  CAS  Google Scholar 

  • Guo Z and Stiller JW (2004) Comparative genomics of cyclindependent kinases suggest co-evolution of the RNAP II Cterminal domain and CTD-directed CDKs. BMC Genomics 5: 69

    Article  PubMed  Google Scholar 

  • Jetton N, et al. (2009) The cell cycle as a therapeutic target against Trypanosoma brucei: Hesperadin inhibits Aurora kinase-1 and blocks mitotic progression in bloodstream forms. Mol Microbiol 72: 442–458

    Article  PubMed  CAS  Google Scholar 

  • Junttila MR, Li SP, and Westermarck J (2008) Phosphatasemediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 22: 954–965

    Article  PubMed  CAS  Google Scholar 

  • Kaul D, Rani R, and Sehgal R (2001) Receptor-Ck regulates giardia encystation process. Mol Cell Biochem 225: 167–169

    Article  PubMed  CAS  Google Scholar 

  • Kim KT, Mok MT, and Edwards MR (2005) Protein kinase B from Giardia intestinalis. Biochem Biophys Res Commun 334: 333–341

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, et al. (2004) A zinc-binding dual-specifi city YVH1 phosphatase in the malaria parasite, Plasmodium falciparum, and its interaction with the nuclear protein, pescadillo. Mol Biochem Parasitol 133: 297–310

    Article  PubMed  CAS  Google Scholar 

  • Kutuzov MA and Andreeva AV (2008) Protein Ser/Thr phosphatases of parasitic protozoa. Mol Biochem Parasitol 161:81–90

    Article  PubMed  CAS  Google Scholar 

  • Lalle M, Salzano AM, Crescenzi M, and Pozio E (2006) The Giardia duodenalis 14-3-3 protein is post-translationally modifi ed by phosphorylation and polyglycylation of the Cterminal tail. J Biol Chem 281: 5137–5148

    Article  PubMed  CAS  Google Scholar 

  • Lalle M, et al. (2010) Involvement of 14-3-3 protein post-translational modifi cations in Giardia duodenalis encystation. Int J Parasitol 40: 201–213

    Article  PubMed  CAS  Google Scholar 

  • Lauwaet T and Gillin FD (2008) Signaling during Giardia differentiation. In: Giardia and Cryptosporidium: from molecules to disease (G. Ortega-Pierres et al., eds.). CAB International, Cambridge, MA

    Google Scholar 

  • Lauwaet T, Davids BJ, Reiner DS, and Gillin FD (2007a) Encystation of Giardia lamblia: a model for other parasites. Curr Opin Microbiol 10: 554–559

    Article  PubMed  Google Scholar 

  • Lauwaet T, et al. (2007b) Protein phosphatase 2A plays a crucial role in Giardia lamblia differentiation. Mol Biochem Parasitol 152: 80–89

    Article  PubMed  CAS  Google Scholar 

  • Li J, Mahajan A and Tsai MD (2006) Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry 45: 15168–15178

    Article  PubMed  CAS  Google Scholar 

  • Mahjoub MR, et al. (2002) The FA2 gene of Chlamydomonas encodes a NIMA family kinase with roles in cell cycle progression and microtubule severing during defl agellation. J Cell Sci 115: 1759–1768

    PubMed  CAS  Google Scholar 

  • Malumbres M and Barbacid M (2007) Cell cycle kinases in cancer. Curr Opin Genet Dev 17: 60–65

    Article  PubMed  CAS  Google Scholar 

  • Morrison HG, et al. (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317: 1921–1926

    Article  PubMed  CAS  Google Scholar 

  • Naula C, Parsons M, and Mottram JC (2005) Protein kinases as drug targets in trypanosomes and Leishmania. Biochim Biophys Acta 1754: 151–159

    Article  PubMed  CAS  Google Scholar 

  • Nohynkova E, Tumova P, and Kulda J (2006) Cell division of Giardia intestinalis: fl agellar developmental cycle involves transformation and exchange of fl agella between mastigonts of a diplomonad cell. Eukaryot Cell 5: 753–761

    Article  PubMed  CAS  Google Scholar 

  • Ooms LM, et al. (2009) The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem J 419: 29–49

    Article  PubMed  CAS  Google Scholar 

  • O’Regan L, Blot J, and Fry AM (2007) Mitotic regulation by NIMA-related kinases. Cell Div 2: 25

    Article  Google Scholar 

  • Parker JD, Bradley BA, Mooers AO, and Quarmby LM (2007) Phylogenetic analysis of the Neks reveals early diversifi cation of ciliary-cell cycle kinases. PLoS One 2: e1076

    Article  PubMed  Google Scholar 

  • Parsons M, Valentine M, and Carter V (1993) Protein kinases in divergent eukaryotes: identifi cation of protein kinase activities regulated during trypanosome development. Proc Natl Acad Sci USA 90: 2656–2660

    Article  PubMed  CAS  Google Scholar 

  • Parsons M, Worthey EA, Ward PN, and Mottram JC (2005) Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics 6: 127

    Article  PubMed  Google Scholar 

  • Poxleitner MK, Dawson SC, and Cande WZ (2008) Cell cycle synchrony in Giardia intestinalis cultures achieved by using nocodazole and aphidicolin. Eukaryot Cell 7: 569–574

    Article  PubMed  CAS  Google Scholar 

  • Pradel LC, Bonhivers M, Landrein N, Robinson DR (2006) NIMA-related kinase TbNRKC is involved in basal body separation in Trypanosoma brucei. J Cell Sci 119(Pt 9): 1852–1863 (Epub 2006 Apr 11)

    Article  PubMed  CAS  Google Scholar 

  • Reiner DS, et al. (2003) Calcium signaling in excystation of the early diverging eukaryote, Giardia lamblia. J Biol Chem 278: 2533–2540

    Article  PubMed  CAS  Google Scholar 

  • Reiner DS, et al. (2008) Synchronisation of Giardia lamblia: identifi cation of cell cycle stage-specifi c genes and a differentiation restriction point. Int J Parasitol 38: 935–944

    Article  PubMed  CAS  Google Scholar 

  • Reininger L, et al. (2009) An essential role for the Plasmodium Nek-2 Nima-related protein kinase in the sexual development of malaria parasites. J Biol Chem 284: 20858–20868

    Article  PubMed  CAS  Google Scholar 

  • Sagolla MS, Dawson SC, Mancuso JJ, and Cande WZ (2006) Three-dimensional analysis of mitosis and cytokinesis in the binucleate parasite Giardia intestinalis. J Cell Sci 119: 4889–4900

    Article  PubMed  CAS  Google Scholar 

  • Sim AT and Scott JD (1999) Targeting of PKA, PKC and protein phosphatases to cellular microdomains. Cell Calcium 26: 209–217

    Article  PubMed  CAS  Google Scholar 

  • Smith LA, et al. (2006) Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities, and common features with human disease. J Am Soc Nephrol 17: 2821–2831

    Article  PubMed  CAS  Google Scholar 

  • Ward P, Equinet L, Packer J, and Doerig C (2004) Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics 5: 79

    Article  PubMed  Google Scholar 

  • Wloga D, Camba A, Rogowski K, Manning G, Jerka-Dziadosz M, and Gaertig J (2006) Members of the NIMA-related kinase family promote disassembly of cilia by multiple mechanisms. Mol Biol Cell 17: 2799–2810

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, et al. (2006) Structure of the protein phosphatase 2A holoenzyme. Cell 127: 1239–1251

    Article  PubMed  CAS  Google Scholar 

  • Yang ZZ, Tschopp O, Baudry A, Dummler B, Hynx D, and Hemmings BA (2004) Physiological functions of protein kinase B/Akt. Biochem Soc Trans 32: 350–354

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Lauwaet, T., Gillin, F.D. (2011). Signaling Pathways in Giardia lamblia . In: Luján, H.D., Svärd, S. (eds) Giardia. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0198-8_12

Download citation

Publish with us

Policies and ethics