Advertisement

Anisotropie polyconvex energies

  • Jörg Schröder
Chapter
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 516)

Abstract

In large strain elasticity the existence of minimizers is guaranteed if the variational functional to be minimized is sequentially weakly lower semicontinuous (s.w.l.s) and coercive. Therefore, polyconvex functions — which are always s.w.l.s. — could be very helpful for the modeling of isotropic as well as anisotropic hyperelastic materials. For isotropy a variety of polyconvex models are well-known from the literature. In this contribution we focus on the construction of anisotropic polyconvex functions, especially for the case of transversely isotropic and orthotropic symmetries. In order to arrive at a coordinate-invariant formulation we use the concept of structural tensors and apply representation theorems of tensor functions. — This review article is the result of a long, close, and fruitful cooperation with Patrizio Neff.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. S. S. Antman. Nonlinear problems of elasticity. Springer, 1995.Google Scholar
  2. J. M. Ball. Convexity conditions and existence theorems in non-linear elasticity. Archive for Rational Mechanics and Analysis, 63:337–403, 1977a.zbMATHCrossRefGoogle Scholar
  3. J. M. Ball. Constitutive inequalities and existence theorems in nonlinear elastostatics. In R.J. Knops, editor, Herriot Watt Symposion: Nonlinear Analysis and Mechanics., volume 1, pages 187–238. Pitman, London, 1977b.Google Scholar
  4. J.M. Ball. Some open problems in elasticity. In Geometry, Mechanics and Dynamics, pages 3–59. Springer, New York, 2002.Google Scholar
  5. D. Balzani. Polyconvex anisotropic energies and modeling of damage applied to arterial walls. PhD thesis, Institut für Mechanik, Abteilung Bauwissenschaften, Fakultät für Ingenieurwissenschaften, 2006.Google Scholar
  6. D. Balzani, P. Neff, J. Schröder, and G.A. Holzapfel. A polyconvex frame-work for soft biological tissues. Adjustment to experimental data. International Journal of Solids and Structures, 43(20):6052–6070, 2006.zbMATHCrossRefMathSciNetGoogle Scholar
  7. J. P. Boehler. On irreducible representations for isotropic scalar functions. Zeitschrift für Angewandte Mathematik und Mechanik, 57:323–327, 1977.zbMATHCrossRefMathSciNetGoogle Scholar
  8. J. P. Boehler. Lois de comportement anisotrope des milieux continus. Journal de Mécanique, 17(2):153–190, 1978.zbMATHMathSciNetGoogle Scholar
  9. J. P. Boehler. A simple derivation of res presentations for non-polynomial constitutive equations in some cases of anisotropy. Zeitschrift für Angewandte Mathematik und Mechanik, 59:157–167, 1979.zbMATHCrossRefMathSciNetGoogle Scholar
  10. J. P. Boehler, editor. Applications of tensor functions in solid mechanics. Springer, 1987a.Google Scholar
  11. J. P. Boehler. Introduction to the invariant formulation of anisotropic constitutive equations. In J. P. Boehler, editor, Applications of Tensor Functions in Solid Mechanics, volume 292 of CISM Courses and Lectures, pages 13–30. Springer, 1987b.Google Scholar
  12. P. G. Ciarlet. Mathematical Elasticity, Vol I: Three-Dimensional Elasticity. Studies in Mathematics and its Applications. Elsevier, Amsterdam, 1988.Google Scholar
  13. B. D. Coleman and W. Noll. On the thermostatics of continuous media. Archive for Rational Mechanics and Analysis, 4:97–128, 1959.zbMATHCrossRefMathSciNetGoogle Scholar
  14. B. Dacorogna. Direct methods in the calculus of variations. Springer, 2000.Google Scholar
  15. A. Ehret and M. Itskov. A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tissues. Journal of Materials Science, 42: 8853–8863, 2007.CrossRefGoogle Scholar
  16. A. E. Green and J. E. Adkins. Large elastic deformations and non-linear continuum mechanics. Clarendon Press, Oxford, (second edition 1970) edition, 1960.zbMATHGoogle Scholar
  17. S. Hartmann and P. Neff. Polyconvexity of generalized polynomial type hyperelastic strain energy functions for near incompressibility. International Journal of Solids and Structures, 40:2767–2791, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  18. R. Hill. On uniqueness and stability in the theory of finite elastic strains. Journal of the Mechanics and Physics of Solids, 5:229–241, 1957.zbMATHCrossRefMathSciNetGoogle Scholar
  19. M. Itskov and N. Aksel. A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. International Journal of Solids and Structures, 41:3833–3848, 2004.zbMATHCrossRefMathSciNetGoogle Scholar
  20. M. Itskov, A.E. Ehret, and D. Mavrillas. A polyconvex anisotropic strain-energy function for soft collagenous tissues. Biomechanics and Modeling in Mechanobiology, 5:17–26, 2006.CrossRefGoogle Scholar
  21. N. Kambouchev, J. Fernandez, and R. Radovitzky. A polyconvex model for materials with cubic symmetry. Modelling and Simulation in Material Science and Engineering, 15:451–467, 2007.CrossRefGoogle Scholar
  22. A. Krawietz. Materialtheorie — Mathematische Beschreibung des phänomenologischen thermomechanischen Verhaltens. Springer, 1986.Google Scholar
  23. I. S. Liu. On representations of anisotropic invariants. International Journal of Engineering Science, 20:1099–1109, 1982.zbMATHCrossRefMathSciNetGoogle Scholar
  24. B. Markert, W. Ehlers, and N. Karajan. A general polyconvex strain-energy function for fiber-reinforced materials. Proceedings in Applied Mathematics and Mechanics, 5:245–246, 2005.CrossRefGoogle Scholar
  25. J.E. Marsden and J.R. Hughes. Mathematical Foundations of Elasticity. Prentice-Hall, 1983.Google Scholar
  26. A. Mielke. Necessary and sufficient conditions for polyconvexity of isotropic functions. Journal of Convex Analysis, 12:291–314, 2005.zbMATHMathSciNetGoogle Scholar
  27. C. B. Morrey. Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific Journal of Mathematics, 2:25–53, 1952.zbMATHMathSciNetGoogle Scholar
  28. C. B. Morrey. Multiple integrals in the calculus of variations. Springer, 1966.Google Scholar
  29. P. Neff. Mathematische Analyse multiplikativer Viskoplastizität. PhD thesis, Technische Universität Darmstadt, Aachen, 2000. Shaker Verlag, ISBN:3-8265-7560-l.Google Scholar
  30. F. E. Neumann. Vorlesungen über die Theorie der Elastizität der festen Körper und des Lichtäthers. Teubner, 1885.Google Scholar
  31. A. C. Pipkin and R. S. Rivlin. The formulation of constitutive equations in continuum physics. I. Archive for Rational Mechanics and Analysis, 4: 129–144, 1959.zbMATHCrossRefMathSciNetGoogle Scholar
  32. A. Raoult. Non-polyconvexity of the stored energy function of a St.-Venant-Kirchhoff material. Aplikace Matematiky, 6:417–419, 1986.MathSciNetGoogle Scholar
  33. J. Rychlewski and J. M. Zhang. On representation of tensor functions: a review. Advances in Mechanics, 14:75–94, 1991.MathSciNetGoogle Scholar
  34. J. Schröder and P. Neff. On the construction of polyconvex anisotropic free energy functions. In C. Miehe, editor, Proceedings of the IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, pages 171–180. Kluwer Academic Publishers, 2001.Google Scholar
  35. J. Schröder and P. Neff. Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. International Journal of Solids and Structures, 40:401–445, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  36. J. Schröder, P. Neff, and D. Balzani. A variational approach for materially stable anisotropic hyperelasticity. International Journal of Solids and Structures, 42(15):4352–4371, 2005.zbMATHCrossRefMathSciNetGoogle Scholar
  37. J. Schröder, P. Neff, and V. Ebbing. Anisotropie polyconvex energies on the basis of crystallographic motivated structural tensors. Journal of the Mechanics and Physics of Solids, 56(12):3486–3506, 2008.zbMATHCrossRefMathSciNetGoogle Scholar
  38. J. Schröder, P. Neff, and V. Ebbing. Polyconvex energies for trigonal, tetragonal and cubic symmetry groups. In K. Hackl, editor, Proceedings of the IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials, Bochum 2008, 2009. submitted.Google Scholar
  39. G. F. Smith. On a fundamental error in two papers of C.-C. Wang “On representations for isotropic functions, Parts I and II”. Archive for Rational Mechanics and Analysis, 36:161–165, 1970.zbMATHCrossRefMathSciNetGoogle Scholar
  40. G. F. Smith. On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. International Journal of Engineering Science, 9: 899–916, 1971.zbMATHCrossRefMathSciNetGoogle Scholar
  41. G.F. Smith and R.S. Rivlin. Stress-deformation relations for anisotropic solids. Archive for Rational Mechanics and Analysis, 1:107–112, 1957.zbMATHCrossRefMathSciNetGoogle Scholar
  42. G.F. Smith and R.S. Rivlin. The strain-energy function for anisotropic elastic materials. Transactions of the American Mathematical Society, 88:175–193, 1958.zbMATHMathSciNetGoogle Scholar
  43. G.F. Smith, M.M. Smith, and R.S. Rivlin. Integrity bases for a symmetric tensor and a vector, the crystal classes. Archive for Rational Mechanics and Analysis, 12:93–133, 1963.zbMATHCrossRefMathSciNetGoogle Scholar
  44. A. J. M. Spencer. Isotropic integrity bases for vectors and second-order tensors. Archive for Rational Mechanics and Analysis, 18:51–82, 1965.zbMATHCrossRefMathSciNetGoogle Scholar
  45. A. J. M. Spencer. Theory of invariants. In A.C. Eringen, editor, Continuum Physics, volume 1, pages 239–353. Academic Press, 1971.Google Scholar
  46. D. J. Steigmann. Frame-invariant polyconvex strain-energy functions for some anisotropic solids. Mathematics and Mechanics of Solids, 8: 497–506, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  47. E.S. Şuhubi. Thermoelastic solids. In A.C. Eringen, editor, Continuum Physics, volume 2. Academic Press, 1975.Google Scholar
  48. C. Truesdell and W. Noll. The nonlinear field theories of mechanics. In S. Flügge, editor, Handbuch der Physik III/3. Springer, 1965.Google Scholar
  49. M. Šilhavý. The mechanics and thermodynamics of continuous media. Springer, 1997.Google Scholar
  50. C.-C. Wang. On representations for isotropic functions. Part I. Isotropic functions of symmetric tensors and vectors. Archive for Rational Mechanics and Analysis, 33:249–267, 1969a.CrossRefMathSciNetGoogle Scholar
  51. C.-C. Wang. On representations for isotropic functions. Part II. Isotropic functions of skew-symmetric tensors, symmetric tensors, and vectors. Archive for Rational Mechanics and Analysis, 33:268–287, 1969b.CrossRefMathSciNetGoogle Scholar
  52. C.-C. Wang. A new representation theorem for isotropic functions: An answer to professor G. F. Smith’s Criticism of my papers on representations for isotropic functions. Part 1. Scalar-valued isotropic functions. Archive for Rational Mechanics and Analysis, 36:166–197, 1970a.zbMATHCrossRefMathSciNetGoogle Scholar
  53. C.-C. Wang. A new representation theorem for isotropic functions: An answer to professor G. F. Smith’s Criticism of my papers on representations for isotropic functions. Part 2. Vector-valued isotropic functions, symmetric tensor-valued isotropic functions, and skew-symmetric tensor-valued isotropic functions. Archive for Rational Mechanics and Analysis, 36:198–223, 1970b.zbMATHCrossRefMathSciNetGoogle Scholar
  54. C.-C. Wang. Corrigendum to my recent papers on “Representations for isotropic functions”. Archive for Rational Mechanics and Analysis, 43: 392–395, 1971.CrossRefMathSciNetGoogle Scholar
  55. H. Weyl. The classical groups, their invariants and representation. Princeton Univ. Press, Princeton, New Jersey, 1946.Google Scholar
  56. P. Wriggers. Nonlinear finite element methods. Springer, 2008.Google Scholar
  57. H. Xiao. On isotropic extension of anisotropic tensor functions. Zeitschrift für Angewandte Mathematik und Mechanik, 76(4):205–214, 1996.zbMATHCrossRefGoogle Scholar
  58. J.M. Zhang and J. Rychlewski. Structural tensors for anisotropic solids. Archives of Mechanics, 42:267–277, 1990.zbMATHMathSciNetGoogle Scholar
  59. Q.-S. Zheng. Theory of representations for tensor functions — a unified invariant approach to constitutive equations. Applied Mechanics Reviews, 47:545–587, 1994.CrossRefGoogle Scholar
  60. Q.-S. Zheng and A. J. M. Spencer. Tensors which characterize anisotropics. International Journal of Engineering Science, 31(5):679–693, 1993.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© CISM, Udine 2010

Authors and Affiliations

  • Jörg Schröder
    • 1
  1. 1.University Duisburg-EssenEssenGermany

Personalised recommendations