Advertisement

Bioclimatic Temperatures in the High Alps

  • Walter LarcherEmail author
Chapter

Abstract

Characteristic of a high mountain climate are lower temperatures, frequency and intensity of wind and a more irregular distribution of precipitation. High mountain climate is defined by small-scale, terrain-dependent and short-term changeability.

Keywords

Soil Temperature Snow Cover Alpine Grassland Alpine Zone Sunny Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Many thanks to the Central Institute for Meteorology and Geodynamics, Regional Center for Tirol and Vorarlberg (Dr. Karl Gabl), and to the Institute of Ecology, University Innsbruck (Prof. Dr. Ulrike Tappeiner), for providing data. Thanks, to “pdl, Dr. Eugen Preuss” Innsbruck, for image processing.

References

  1. Alvarez-Uria P, Körner C (2007) Low temperature limits of root growth in deciduous and evergreen temperate tree species. Func Ecol 21:211–218CrossRefGoogle Scholar
  2. Buchner O, Neuner G (2003) Variability of heat tolerance in alpine plant species measured at different altitudes. Arctic Antarctic Alpine Res 35:411–420CrossRefGoogle Scholar
  3. Cappel A (1977) Extremwerte der Lufttemperatur auf der Zugspitze (1900–1976). Jb Sonnblick-Verein 74(75):37–42Google Scholar
  4. Cartellieri E (1940) Über Transpiration und Kohlensäureassimilation an einem hochalpinen Standort. SB Akad Wiss Wien, Math-nat Kl I 149:95–143Google Scholar
  5. Cernusca A (1976a) Bestandes-Struktur, Bioklima und Energiehaushalt von alpinen Zwergstrauchbeständen. Oecolog Plant 11:71–102Google Scholar
  6. Cernusca A (1976b) Energie- und Wasserhaushalt eines alpinen Zwergstrauchbestandes während einer Föhnperiode. Archiv für Meteorologie. Geophys Bioklima Ser B 24:219–241CrossRefGoogle Scholar
  7. Eckel O (1960) Bodentemperatur. In: Steinhauser F, Eckel O, Lauscher F (eds) Klimatographie von Österreich, Bd. 3 (2). Denkschrift Österr Akad Wiss. Springer, Wien, pp 207–292Google Scholar
  8. Franz H (1979) Ökologie der Hochgebirge. Ulmer, StuttgartGoogle Scholar
  9. Grabherr G (1977) Der CO2-Gaswechsel des immergrünen Zwergstrauches Loiseleuria procumbens (L.) Desv. in Abhängigkeit von Strahlung, Temperatur, Wasserstreß und phänologischem Zustand. Photosynthetica 11:302–310Google Scholar
  10. Körner C (2003) Alpine plant life, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  11. Körner C, De Moraes JAPV (1979) Water potential and diffusion resistance in alpine cushion plants on clear summer days. Oecol Plant 14:109–120Google Scholar
  12. Körner C, Diemer M (1987) In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Func Ecol 1:179–194CrossRefGoogle Scholar
  13. Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732CrossRefGoogle Scholar
  14. Körner C, Paulsen J, Pelaez-Riedl S (2003) A bioclimatic characterisation of Europa’s alpine areas. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europa. Springer, Berlin, pp 13–30Google Scholar
  15. Ladinig U, Wagner J (2005) Sexual reproduction of the high mountain plant Saxifraga moschata Wulfen at varying lengths of the growing season. Flora 200:502–515CrossRefGoogle Scholar
  16. Ladinig U, Wagner J (2009) Dynamics of flower development and vegetative shoot growth in the high mountain plant Saxifraga bryoides L. Flora 204:63–73CrossRefGoogle Scholar
  17. Larcher W (1977) Ergebnisse des IBP-Projektes “Zwergstrauchheide Patscherkofel”. SB Österr Akad Wiss Math-nat Kl I 186:301–371Google Scholar
  18. Larcher W (1980) Klimastreß im Gebirge. Adaptationstraining und Selektionsfilter für Pflanzen. Rheinisch-Westf Akademie der Wissenschaft N291. Westdeutscher Verlag, Leverkusen, pp 49–88Google Scholar
  19. Larcher W, Wagner J (1976) Temperaturgrenzen der CO2-Aufnahme und Temperaturresistenz der Blätter von Gebirgspflanzen im vegetationsaktiven Zustand. Oecol Plant 11:361–374Google Scholar
  20. Larcher W, Wagner J (2004) Lebensweise der Alpenrosen in ihrer Umwelt: 70 Jahre ökophysiologische Forschung in Innsbruck. Berichte naturwiss-med Verein Innsbruck 91:251–291Google Scholar
  21. Larcher W, Kainmüller C, Wagner J (2010) Survival types of high mountain plants under extreme temperatures. Flora 205:3–18CrossRefGoogle Scholar
  22. Larl I, Wagner J (2006) Timing of reproductive and vegetative development in Saxifraga oppositifolia in an alpine and a subnival climate. Plant Biol 8:155–166PubMedCrossRefGoogle Scholar
  23. Lauscher A, Lauscher F (1980) Vom Schneeklima der Ostalpen. Jb Sonnblick Verein 1978–1980:15–23Google Scholar
  24. Lowry WP (1967) Weather and life. An introduction to biometeorology. Academic, New YorkGoogle Scholar
  25. Mathys H (1974) Klimatische Aspekte zu der Frostverwitterung in der Hochgebirgsregion. Mitt Naturforschung Ges Bern NF 31:49–62Google Scholar
  26. Moser W, Brzoska W, Zachhuber K, Larcher W (1977) Ergebnisse des IBP-Projekts “Hoher Nebelkogel 3184 m”. SB Österr Akad Wiss Math-nat KlI 186:386–419Google Scholar
  27. Neuner G, Braun V, Buchner O, Taschler D (1999) Leaf rosette closure in the alpine rosette plant Saxifraga paniculata Mill.: significance for survival of drought and heat under high irradiation. Plant. Cell Environ 22:1539–1548CrossRefGoogle Scholar
  28. Steinhauser F (1954) Klimatabelle für den Sonnblick (3106 m) 1901 bis 1950. Jb Sonnblick Verein 49(50):56–60Google Scholar
  29. Svoboda J (1977) Ecology and primary production of raised beach communities, Truelove Lowland. In: Bliss LC (ed) Truelove lowland, Devon Island, Canada: a high arctic ecosystem. University Alberta Press, Edmonton, pp 185–216Google Scholar
  30. Taschler D, Neuner G (2004) Summer frost resistance and freezing patterns measured in situ in leaves of major alpine plant growth forms in relation to their upper distribution boundary. Plant Cell Environ 27:737–746CrossRefGoogle Scholar
  31. Tasser E, Tappeiner U, Cernusca A (2001) Südtirol Almen in Wandel. Ökologische Folgen von Landnutzungsänderungen. Europäische Akademie, BozenGoogle Scholar
  32. Wagner J, Mitterhofer E (1998) Phenology, seed development, and reproductive success of an alpine population of Gentianella germanica in climatically varying years. Botan Acta 111:159–166Google Scholar
  33. Wagner J, Reichegger B (1997) Phenology and seed development of the alpine sedges Carex curvula and Carex firma in response to contrasting topoclimates. Alpine Arctic Res 29:291–299CrossRefGoogle Scholar
  34. Wagner J, Achalkazi M, Mayr St (1995) Anwendung quantitativ embryologischer Methoden in Entwicklungsbiologie und Reproduktionsökologie der Pflanzen. Anzeiger der Österreichischen Akademie der Wissenschaften. Math-nat Kl I 131:7–18Google Scholar
  35. Wagner J, Steinacher G, Ladinig U (2010) Ranunculus glacialis L.: successful reproduction at the altitudinal limits of higher plant life. Protoplasma DOI  10.1007/s00709-009-0104-1
  36. Wieser G, Bahn M (2004) Seasonal and spatial variation of woody tissue respiration in a Pinus cembra tree at the alpine timberline in the central Austrian Alps. Trees 18:576–580CrossRefGoogle Scholar
  37. Wohlfahrt G, Bahn M, Haubner E, Horak I, Michaele W, Rottmar K, Tappeiner U, Cernusca A (1999) Inter-specific variation of the biochemical limitation to photosynthesis and related leaf traits of 30 species from mountain grassland ecosystems under different land use. Plant Cell Environ 22:1281–1296CrossRefGoogle Scholar
  38. zamg.ac.at (Regional Centre for Meteorology)Google Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  1. 1.Institute of Botany, LTUIInnsbruckAustria

Personalised recommendations