Advertisement

Psychrophilic Microorganisms in Alpine Soils

  • Rosa MargesinEmail author
Chapter

Abstract

The Earth is a cold planet. About 85% of the biosphere is exposed to temperatures below 5°C throughout the year. Cold habitats span from the Arctic to the Antarctic, from high mountain range environments to the deep ocean. The major fraction of this low-temperature environment is represented by the deep sea (nearly 75% of the Earth is covered by oceans and 90% of the ocean volume is below 5°C), followed by snow (35% of land surface), permafrost (24% of land surface), sea ice (13% of the Earth’s surface) and glaciers (10% of land surface). Psychrophilic microorganisms, including bacteria, archaea, yeasts, filamentous fungi and algae, have successfully colonized these cold environments, because they evolved special mechanisms to overcome the life-endangering influence of low temperature. This chapter describes mechanisms of microbial cold adaptation and aspects of microbial activity and biodiversity in cold alpine soils.

Keywords

Membrane Fluidity Subzero Temperature Psychrophilic Bacterium Snow Mold Cold Climate Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bakermans C (2008) Limits for microbial life at subzero temperatures. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 17–28CrossRefGoogle Scholar
  2. Bakermans C, Bergholz PW, Ayala-del-Río H, Tiedje J (2009) Genomic insights into cold adaption of permafrost bacteria. In: Margesin R (ed) Permafrost soils, vol 16, Soil biology. Springer, Berlin, pp 159–168CrossRefGoogle Scholar
  3. Beall PT (1983) States of water in biological systems. Cryobiology 20:324–443PubMedCrossRefGoogle Scholar
  4. Chattopadhyay MK (2002) The cryoprotective effects of glycine betaine on bacteria. Trends Microbiol 10:311CrossRefGoogle Scholar
  5. Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol 50:631–642PubMedGoogle Scholar
  6. Christner BC (2002) Incorporation of DNA and protein precursors into macromolecules by bacteria at -15°C. Appl Environ Microbiol 68:6435–6438PubMedCrossRefGoogle Scholar
  7. Clein JS, Schimel JP (1995) Microbial activity of tundra and taiga soils at sub-zero temperatures. Soil Biol Biochem 27:1231–1234CrossRefGoogle Scholar
  8. D’Amico S, Gerday C, Feller G (2003) Temperature adaptation of proteins: engineering mesophilic-like activity and stability in a cold-adapted alpha-amylase. J Mol Biol 332:981–988PubMedCrossRefGoogle Scholar
  9. D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389PubMedCrossRefGoogle Scholar
  10. Diaz HF, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Change 59:1–4CrossRefGoogle Scholar
  11. Edwards KA, Jefferies RL (2010) Nitrogen uptake by Carex aquatilis during the winter-spring transition in a low Arctic wet meadow. J Ecol 98:737–744CrossRefGoogle Scholar
  12. Feller G (2007) Life at low temperatures: is disorder the driving force? Extremophiles 11(2):11–216CrossRefGoogle Scholar
  13. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208PubMedCrossRefGoogle Scholar
  14. Franks F (1995) Protein destabilization at low temperatures. Adv Protein Chem 46:105–139PubMedCrossRefGoogle Scholar
  15. Freeman KR, Martin AP, Karki D, Lynch RC, Mitter MS, Meyer AF, Longcore JE, Simmons DR, Schmidt SK (2009) Evidence that chytrids dominate fungal communities in high-elevation soils. Proc Natl Acad Sci USA 106:18315–18320PubMedCrossRefGoogle Scholar
  16. Gangwar P, Alam SI, Bansod S, Singh L (2009) Bacterial diversity of soil samples from the western Himalayas, India. Can J Microbiol 55:564–577PubMedCrossRefGoogle Scholar
  17. Gilbert JA, Hill PJ, Dodd CER, Laybourn-Parry J (2004) Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology 150:171–180PubMedCrossRefGoogle Scholar
  18. Gilbert JA, Davies PL, Laybourn-Parry J (2005) A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol Lett 245:67–72PubMedCrossRefGoogle Scholar
  19. Giri DD, Shukla PN, Kashyap S, Singh P, Kashyap AK, Pandey KD (2007) Variation in methanotrophic bacterial population along an altitude gradient at two slopes in tropical dry deciduous forest. Soil Biol Biochem 39:2424–2426CrossRefGoogle Scholar
  20. Gounot AM, Russell NJ (1999) Physiology of cold-adapted microorganisms. In: Margesin R, Schinner F (eds) Cold-adapted organisms. Springer, Berlin, pp 33–55Google Scholar
  21. Griffith M, Ala P, Yang DS, Hon WC, Moffat BA (1992) Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol 100:593–596PubMedCrossRefGoogle Scholar
  22. Hart SC (2006) Potential impacts of climate change on nitrogen transformations and greenhouse gas fluxes in forests: a soil transfer study. Global Change Biol 12:1032–1046CrossRefGoogle Scholar
  23. Hoshino T, Xiao N, Tkachenko OB (2009) Cold adaptation in the phythopathogenic fungi causing snow molds. Mycoscience 50:26–38CrossRefGoogle Scholar
  24. Ingraham JL, Stokes JL (1959) Psychrophilic bacteria. Bacteriol Rev 23:97–108PubMedGoogle Scholar
  25. Jakosky BM, Nealson KH, Bakermans C, Ley RE, Mellon MT (2003) Subfreezing activity of microorganisms and the potential habitability of Mars’ polar regions. Astrobiology 3:343–350PubMedCrossRefGoogle Scholar
  26. Jaouen T, De E, Chevalier S, Orange N (2004) Size dependence on growth temperature is a common characteristic of the major outer membrane protein OprF in psychrotrophic and mesophilic Pseudomonas species. Appl Environ Microbiol 70:6665–6669PubMedCrossRefGoogle Scholar
  27. Jefferies JL, Walker NA, Edwards KA, Dainty J (2010) Is the decline of soil microbial biomass in late winter coupled to changes in the physical status of cold soils? Soil Biol Biochem 42:129–135CrossRefGoogle Scholar
  28. Junge K, Eicken H, Swanson BD, Deming JW (2006) Bacterial incorporation of leucine into protein down to -20°C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52:417–429PubMedCrossRefGoogle Scholar
  29. Kawahara H (2002) The structure and function of ice crystal-controlling proteins from bacteria. J Biosci Bioeng 94:492–496PubMedGoogle Scholar
  30. Kawahara H (2008) Cryoprotection and ice-binding proteins. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 229–246CrossRefGoogle Scholar
  31. Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: Implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res 49:2163–2181CrossRefGoogle Scholar
  32. Kuhn M (2008) The climate of snow and ice as boundary condition for microbial life. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 3–15CrossRefGoogle Scholar
  33. Kurihara T, Esaki N (2008) Proteomic studies of psychrophilic microorganisms. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 333–344CrossRefGoogle Scholar
  34. Lipson DA (2007) Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients. FEMS Microbiol Ecol 59:418–427PubMedCrossRefGoogle Scholar
  35. Lipson DA, Schmidt SK (2004) Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains. Appl Environ Microbiol 70:2867–2879PubMedCrossRefGoogle Scholar
  36. Lipson DA, Monson RK, Schmidt SK, Weintraub MN (2009) The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest. Biogeochemistry 95:23–35CrossRefGoogle Scholar
  37. Ludley KE, Robinson CH (2008) Decomposer Basidiomycota in Arctica and Antarctic ecosystems. Soil Biol Biochem 40:11–29CrossRefGoogle Scholar
  38. Lundheim R (2002) Physiological and ecological significance of biological ice nucleators. Phil Trans R Soc Lond B 357:937–943CrossRefGoogle Scholar
  39. Ma X, Chen T, Zhang G, Wang R (2004) Microbial community structure along an altitude gradient in three different localities. Folia Microbiol 49:105–111CrossRefGoogle Scholar
  40. Mancuso Nichols CA, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: A review. Marine Biotechnol 7:253–271CrossRefGoogle Scholar
  41. Margesin R (2009) Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 13:257–262PubMedCrossRefGoogle Scholar
  42. Margesin R, Feller G (2010) Biotechnological applications of psychrophiles. Environ Technol 31:844–845CrossRefGoogle Scholar
  43. Margesin R, Schinner F (1994) Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33:1–14CrossRefGoogle Scholar
  44. Margesin R, Feller G, Gerday C, Russell NJ (2002) Cold-adapted microorganisms: adaptation strategies and biotechnological potential. In: Bitton G (ed) The encyclopedia of environmental microbiology, vol 2. John Wiley & Sons Inc., New York, pp 871–885Google Scholar
  45. Margesin R, Fauster V, Fonteyne PA (2005) Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. Lett Appl Microbiol 40:453–459PubMedCrossRefGoogle Scholar
  46. Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants and animals – fundamental and applied aspects. Naturwissenschaften 94:77–99PubMedCrossRefGoogle Scholar
  47. Margesin R, Jud M, Tscherko D, Schinner F (2009) Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol Ecol 67:208–218PubMedCrossRefGoogle Scholar
  48. Medigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EPC, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335PubMedCrossRefGoogle Scholar
  49. Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupa R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34 H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102(31):10913–10918PubMedCrossRefGoogle Scholar
  50. Nichols DS, Nichols PD, Russell NJ, Davies NW, McMeekin TA (1997) Polyunsaturated fatty acids in the psychrophilic bacterium Shewanelle gelidimarina ACAM456T: molecular species analysis of major phospholipids and biosynthesis of eicosapentaenoic acid. Biochim Biophys Acta 1347:164–176PubMedGoogle Scholar
  51. Niederer M, Pankow W, Wiemken A (1992) Seasonal changes of soluble carbohydrates in mycorrhizas of Norway spruce and changes induced by exposure to frost desiccation. Eur J For Pathol 22:291–299CrossRefGoogle Scholar
  52. Niklinska M, Klimek B (2007) Effect of temperature on the respiration rate of forest soil organic layer along an elevation gradient in the Polish Carpathians. Biol Fertil Soil 43:511–518CrossRefGoogle Scholar
  53. Panikov NS, Sizova MV (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to -35°C. FEMS Microbiol Ecol 59:500–512PubMedCrossRefGoogle Scholar
  54. Panikov NS, Flanaganb PW, Oechelc WC, Mastepanovd MA, Christensend TR (2006) Microbial activity in soils frozen to below -39°C. Soil Biol Biochem 38:785–794CrossRefGoogle Scholar
  55. Petrovic U, Gunde-Cimerman N, Zalar P (2000) Xerotolerant mycobiota from high altitude Anapurna soils, Nepal. FEMS Microbiol Lett 182:339–342PubMedCrossRefGoogle Scholar
  56. Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6:125–136PubMedGoogle Scholar
  57. Phadtare S, Inoue M (2008) Cold-shock proteins. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 191–209CrossRefGoogle Scholar
  58. Prevost D, Drouin P, Laberge S, Bertrand A, Cloutier J, Levesque G (2003) Cold-adapted rhizobia for nitrogen fixation in temperate regions. Can J Bot Rev Can Bot 81:1153–1161Google Scholar
  59. Qiu Y, Vishnivetskaya A, Lubman DM (2009) Proteomic insights: cryoadaptation of permafrost bacteria. In: Margesin R (ed) Permafrost soils, vol 16, Soil biology. Springer, Berlin, pp 169–181CrossRefGoogle Scholar
  60. Riley M, Staley JT, Danchin A, Wang TZ, Brettin TS, Hauser LJ, Land ML, Thompson LS (2008) Genomics of an extreme psychrophile Psychromonas ingrahamii. BMC Genom 9:210CrossRefGoogle Scholar
  61. Rivkina EM, Laurinavichus KS, Gilichinsky DA, Shcherbakova VA (2002) Methane generation in permafrost sediments. Dokl Biol Sci V383:179–181CrossRefGoogle Scholar
  62. Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353CrossRefGoogle Scholar
  63. Rowbury RJ (2003) Temperature effects on biological systems: introduction. Sci Prog 86:1–8PubMedCrossRefGoogle Scholar
  64. Russell NJ (1990) Cold adaptation of microorganisms. Phil Trans R Soc Lond B 329:595–611CrossRefGoogle Scholar
  65. Russell NJ (2008) Membrane components and cold sensing. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 177–190CrossRefGoogle Scholar
  66. Schinner F (1982a) CO2-Freisetzung, Enzymaktivitäten und Bakteriendichte von Böden unter Spaliersträuchern und Polsterpflanzen in der alpinen Stufe. Ecol Plant 3:49–58Google Scholar
  67. Schinner F (1982b) Soil microbial activities and litter decomposition related to altitude. Plant Soil 65:87–94CrossRefGoogle Scholar
  68. Schinner F (1983) Litter decomposition, CO2-release and enzyme activities in a snowbed and on a windswept ridge in an alpine environment. Oecologia 59:288–291CrossRefGoogle Scholar
  69. Schinner F, Gstraunthaler G (1981) Adaptation of microbial communities to the environmental conditions in alpine soils. Oecologia 50:113–116CrossRefGoogle Scholar
  70. Shivaji S, Prakash JSS (2010) How do bacteria sense and respond to low temperatures? Arch Microbiol 192:85–95PubMedCrossRefGoogle Scholar
  71. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Ann Rev Biochem 75:403–433PubMedCrossRefGoogle Scholar
  72. Sidebottom C, Buckley S, Pudney P, Twigg S, Jarman C, Holt C, Telford J, McArthur A, Worrall D, Hubbard R, Lillford P (2000) Heat-stable antifreeze protein from grass. Nature 406:256PubMedCrossRefGoogle Scholar
  73. Uchida M, Nakatsubo T, Kasai Y, Nakane K, Horikoshi T (2000) Altitudinal differences in organic matter mass loss and fungal biomass in a subalpine coniferous forest, Mt. Fuji, Japan. Arct Antarct Alp Res 32:262–269CrossRefGoogle Scholar
  74. Väre H, Vestberg M, Ohtonen R (1997) Shifts in mycorrhiza and microbial activity along an oroarctic altitudinal gradient in Northern Fennoscandia. Arct Alp Res 29:93–104CrossRefGoogle Scholar
  75. Wagner M, Horn M, Daims H (2003) Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Curr Opin Microbiol 6:302–309PubMedCrossRefGoogle Scholar
  76. Wang GZ, Wang YR, Yang PL, Luo HY, Huang HQ, Shi PJ, Meng K, Yao B (2010) Molecular detection and diversity of xylanase genes in alpine tundra soil. Appl Microbiol Biotechnol 87:1383–1393PubMedCrossRefGoogle Scholar
  77. Weinstein RN, Montiel PO, Johnstone K (2000) Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia 92:222–229CrossRefGoogle Scholar
  78. Whittaker RH (1975) Communities and ecosystems, 2nd edn. Mac Millan, New YorkGoogle Scholar
  79. Worrall D, Elias L, Ashford D, Smallwood M, Sidebottom C, Lillford P, Telford J, Holt C, Bowles D (1998) A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science 282:115–117PubMedCrossRefGoogle Scholar
  80. Xu H, Griffith M, Patten CL, Glick BR (1998) Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 44:64–73Google Scholar
  81. Yamashita Y, Kawahara H, Obata H (2002) Identification of a novel anti-ice-nucleating polysaccharide from Bacillus thuringiensis YY529. Biosci Biotechnol Biochem 66:948–954PubMedCrossRefGoogle Scholar
  82. Zhang LM, Wang M, Prosser JI, Zheng YM, He JZ (2009) Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. FEMS Microbiol Ecol 70:208–217CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  1. 1.Institute of MicrobiologyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations