Advertisement

Cell Structure and Physiology of Alpine Snow and Ice Algae

  • Daniel Remias
Chapter

Abstract

Due to climatic and orographic reasons, the occurrence of vascular plants in high alpine regions is limited. At locations that are not suitable for the establishment of higher plants because of exposure, substrate or other abiotic factors, cryptogams can be the dominant life forms. Mosses, lichens and algae particularly thrive on places such as bare rocks, permafrost soils or, exceptionally, even in melting snow and permanent ice. Since these lower plants are poikilohydric and lack complex morphological tissues like the cormophytes, unfavourable conditions (like drought) can be overcome by physiological inactivity, and structural damage is not the critical issue for these poikilohydric organisms. The vegetation period of cryptogams can be very short (from days to a few weeks per year), and growth and reproduction have to be adapted to limiting factors such as low temperatures, limited water-availability or irradiation stress.

Keywords

Lipid Body Snow Surface Glacier Surface Soil Alga Carotenoid Cleavage Dioxygenases 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This research was supported by a grant of the Austrian FWF (200810) to C. Lütz.

References

  1. Bidigare RR, Ondrusek ME, Kennicutt MC II, Iturriaga R, Harvey HR, Hoham RW, Macko SA (1993) Evidence for a photoprotective function for secondary carotenoids of snow algae. J Phycol 29:427–434CrossRefGoogle Scholar
  2. Duval B, Shetty K, Thomas WH (2000) Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. J Appl Phycol 11:559–566CrossRefGoogle Scholar
  3. Elster J, Benson EE (2004) Life in the polar terrestrial environment – a focus on algae and cyanobacteria. In: Fuller B, Lane N, Benson EE (eds) Life in the frozen state. Taylor & Francis, London, pp 111–149CrossRefGoogle Scholar
  4. Ettl H (1968) Ein Beitrag zur Kenntnis der Algenflora Tirols. Ber Nat Med Ver Innsbruck 56:177–354Google Scholar
  5. Ettl H (1983) Chlorophyta I. Phytomonadina. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, vol. 9. Gustav Fischer, Stuttgart, p. 807Google Scholar
  6. Gorton HL, Williams WE, Vogelmann TC (2001) The light environment and cellular optics of the snow alga Chlamydomonas nivalis (Bauer) Wille. Photochem Photobiol 73:611–620PubMedCrossRefGoogle Scholar
  7. Hoham RW, Duval B (2001) Microbial ecology of snow and freshwater ice with emphasis on snow algae. In: Jones HG et al (eds) Snow ecology. Cambridge University Press, New York, pp 168–228Google Scholar
  8. Holzinger A, Tschaikner A, Remias D (2010) Cytoarchitecture of the desiccation-tolerant green alga Zygogonium ericetorum. Protoplamsa 243:15–24CrossRefGoogle Scholar
  9. Jones HG, Pomeroy JW, Walker DA, Hoham RW (2001) Snow ecology. Cambridge University Press, Cambridge, 378ppGoogle Scholar
  10. Karsten U, Friedl T, Schumann R, Hoyer K, Lembcke S (2005) Mycosporine like amino acids (MAAs) and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). J Phycol 41:557–566CrossRefGoogle Scholar
  11. Kol E (1961) Über den roten und grünen Schnee der Alpen. Verh Internat Verein Limnol 14:912–917Google Scholar
  12. Kol E (1968) Kryobiologie. Biologie und Limnologie des Schnees und Eises. I. Kryovegetation. In: Elster HJ, Ohle W (eds) Die Binnengewässer, band XXIV. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, p 216Google Scholar
  13. Kol E (1970) Vom roten Schnee der Tiroler Alpen. Annals Hist Nat Mus Nat Hung 62:129–136Google Scholar
  14. Komárek J, Nedbalová L (2007) Green cryosestic algae. In: Seckbach J (ed) Cellular origin, life in extreme habitats and astrobiology (volume 11): algae and cyanobacteria in extreme environments, part 4: phototrophs in cold environments. Springer, Dordrecht, pp 323–344Google Scholar
  15. Kvíderova J, Stibal M, Nedbalová L, Kaštovská K (2005) The first record of snow algae vitality in situ by variable fluorescence of chlorophyll. Fottea (Czech Phycol) 5:69–77Google Scholar
  16. Leya T (2004) Feldstudien und genetische Untersuchungen zur Kryophilie der Schneealgen Nordwestspitzbergens. Dissertation. Shaker, Aachen, 145ppGoogle Scholar
  17. Leya T, Rahn A, Lütz C, Remias D (2009) Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiol Ecol 67:432–443PubMedCrossRefGoogle Scholar
  18. Li HB, Cheng KW, Wong CC, Fan KW, Chen F, Jiang Y (2007) Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102:771–776CrossRefGoogle Scholar
  19. Ling HU, Seppelt RD (1990) Snow algae of the Windmill Islands, continental Antarctica. Mesotaenium berggrenii (Zygnematales, Chlorophyta) the alga of grey snow. Antarct Sci 2:143–148CrossRefGoogle Scholar
  20. Lohr M (2009) Carotenoids. In: Stern DB (ed) Chlamydomonas sourcebook, vol 2, Organellar and metabolic processes. Academic Press, Oxford, pp 799–819, Chapter 21Google Scholar
  21. Marasco EK, Vay K, Schmidz-Dannert C (2006) Identification of carotenoid cleavage dioxygenases from Nostoc sp. PCC 7120 with different cleavage activities. J Biol Chem 281:31583–31593PubMedCrossRefGoogle Scholar
  22. Remias D, Lütz C (2007) Characterisation of esterified secondary carotenoids and of their isomers in green algae: a HPLC approach. Algolog Stud 124:85–94CrossRefGoogle Scholar
  23. Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40:259–268CrossRefGoogle Scholar
  24. Remias D, Holzinger A, Lütz C (2009) Physiology, ultrastructure and habitat of the ice alga Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from glaciers in the European Alps. Phycologia 48:302–312CrossRefGoogle Scholar
  25. Remias D, Albert A, Lütz C (2010a) Effects of realistically simulated, elevated UV irradiation on photosynthesis and pigment composition of the alpine snow alga Chlamydomonas nivalis and the arctic soil alga Tetracystis sp. (Chlorophyceae). Photosynthetica 48:269–277CrossRefGoogle Scholar
  26. Remias D, Karsten U, Lütz C, Leya T (2010b) Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 243:73–86PubMedCrossRefGoogle Scholar
  27. Řezanka T, Nedbalová L, Sigler K, Cepák V (2008a) Identification of astaxanthin diglucoside diesters from snow alga Chlamydomonas nivalis by liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. Phytochemistry 69:479–490PubMedCrossRefGoogle Scholar
  28. Řezanka T, Nedbalová L, Sigler K (2008b) Unusual medium-chain polyunsaturated fatty acids from the snow alga Chloromonas brevispina. Microbiol Res 163:373–379PubMedCrossRefGoogle Scholar
  29. Sattler B, Remias D, Lütz C, Dastych H, Psenner R (2010) Glaziale und periglaziale Lebensräume im Raum Obergurgl. In: Koch EM, Erschbamer B (eds) Leben auf Schnee und Eis. Innsbruck University Press, Innsbruck, pp 229–249Google Scholar
  30. Shain D, Mason T, Farrell A, Michalewicz L (2001) Distribution and behaviour of ice worms (Mesenchytraeus solifugus) in south-central Alaska. Can J Zool 79:1813–1821Google Scholar
  31. Stibal M (2003) Ecological and physiological characteristics of snow algae from Czech and Slovak mountains. Fottea (Czech Phycol) 3:141–152Google Scholar
  32. Stibal M, Elster J (2005) Growth and morphology variation as a response to changing environmental factors in two Arctic species of Raphidonema (Trebouxiophyceae) from snow and soil. Polar Biol 28:558–567CrossRefGoogle Scholar
  33. Stibal M, Elster J, Šabacká M, Kaštovská K (2007) Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol Ecol 59:265–273PubMedCrossRefGoogle Scholar
  34. Tartari A, Forlani G (2008) Osmotic adjustments in a psychrophilic alga, Xanthonema sp. (Xanthophyceae). Environ Exp Bot 63:342–350CrossRefGoogle Scholar
  35. Thomas WH, Duval B (1995) Sierra Nevada, California, USA, snow algae: snow albedo changes, algal-bacterial interrelationships, and ultraviolet radiation effects. Arct Alp Res 27:389–399CrossRefGoogle Scholar
  36. Vona V, Di Martino Rigano V, Lobosco O, Carfagna S, Esposito S, Rigano C (2004) Temperature responses of growth, photosynthesis, respiration and NADH: nitrate reductase in cryophilic and mesophilic algae. New Phytol 163:325–331CrossRefGoogle Scholar
  37. Werner P (2007) Roter Schnee oder Die Suche nach dem färbenden Prinzip. Akademie Verlag, Berlin, p 190Google Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  1. 1.Institute of Pharmacy/PharmacognosyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations