Skip to main content

Prediction of three-dimensional transmembrane helical protein structures

  • Chapter
  • 1505 Accesses

Abstract

Membrane proteins are critical to living cells and their dysfunction can lead to serious diseases. High-resolution structures of these proteins would provide very valuable information for designing eficient therapies but membrane protein crystallization is a major bottleneck. As an important alternative approach, methods for predicting membrane protein structures have been developed in recent years. This chapter focuses on the problem of modeling the structure of transmembrane helical proteins, and describes recent advancements, current limitations, and future challenges facing de novo modeling, modeling with experimental constraints, and high-resolution comparative modeling of these proteins. Abbreviations: MP, membrane protein; SP, water-soluble protein; RMSD, root-mean square deviation; Cα RMSD, root-mean square deviation over Cα atoms; TM, transmembrane; TMH, transmembrane helix; GPCR, G protein-coupled receptor; 3D, three dimensional; NMR, nuclear magnetic resonance spectroscopy; EPR, electron paramagnetic resonance spectroscopy; FTIR, Fourier transform infrared spectroscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301(5633): 610–615

    Article  Google Scholar 

  • Adamian L and Liang J (2006) Prediction of transmembrane helix orientation in polytopic membrane proteins. BMC Struct Biol 6: 13

    Article  Google Scholar 

  • Baker D and Sali A (2001) Protein structure prediction and structural genomics. Science 294(5540): 93–96

    Article  Google Scholar 

  • Bartesaghi A and Subramaniam S (2009) Membrane protein structure determination using cryo-electron tomography and 3D image averaging. Curr Opin Struct Biol 19(4): 402–407

    Article  Google Scholar 

  • Barth P, Schonbrun J, Baker D (2007) Toward high-resolution prediction and design of transmembrane helical protein structures. Proc Natl Acad Sci USA 104(40): 15682–15687

    Article  Google Scholar 

  • Barth P, Wallner B, Baker D (2009) Prediction of membrane protein structures with complex topologies using limited constraints. Proc Natl Acad Sci USA 106(5): 1409–1414

    Article  Google Scholar 

  • Bass RB, Butler SL, Chervitz SA, Gloor SL, Falke JJ (2007) Use of site-directed cysteine and disulfide chemistry to probe protein structure and dynamics: applications to soluble and transmembrane receptors of bacterial chemotaxis. Meth Enzymol 423: 25–51

    Article  Google Scholar 

  • Becker OM, Marantz Y, Shacham S, Inbal B, Heifetz A, Kalid O, et al. (2004) G protein-coupled receptors: in silico drug discovery in 3D. Proc Natl Acad Sci USA 101(31): 11304–11309

    Article  Google Scholar 

  • Bernsel A, Viklund H, Falk J, Lindahl E, von Heijne G, Elofsson A (2008) Prediction of membraneprotein topology from first principles. Proc Natl Acad Sci USA 105(20): 7177–7181

    Article  Google Scholar 

  • Beuming T and Weinstein H (2005) Modeling membrane proteins based on low-resolution electron microscopy maps: a template for the TM domains of the oxalate transporter OxlT. Protein Eng Des Sel 18(3): 119–125

    Article  Google Scholar 

  • Bowie JU (2005) Solving the membrane protein folding problem. Nature 438(7068): 581–589

    Article  Google Scholar 

  • Bradley P, Misura KM, Baker D (2005) Toward high-resolution de novo structure prediction for small proteins. Science 309(5742): 1868–1871

    Article  Google Scholar 

  • Bu L and Brooks CL III (2008) De novo prediction of the structures of M. tuberculosis membrane proteins. J Am Chem Soc 130(16): 5384–5385

    Article  Google Scholar 

  • Bu L, Im W, Brooks CL III (2007) Membrane assembly of simple helix homo-oligomers studied via molecular dynamics simulations. Biophys J 92(3): 854–863

    Article  Google Scholar 

  • Carpenter EP, Beis K, Cameron AD, Iwata S (2008) Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol 18(5): 581–586

    Article  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Tian FS, Kobilka TS, et al. (2007) Highresolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318(5854): 1258–1265

    Article  Google Scholar 

  • Choe S, Hecht K, Grabe M (2008) A continuum method for determining membrane protein insertion energies and the problem of charged residues. J Gen Physiol 131(6): 563–573

    Article  Google Scholar 

  • Daley DO, Rapp M, Granseth E, Melen K, Drew D, von Heijne G (2005) Global topology analysis of the Escherichia coli inner membrane proteome. Science 308(5726): 1321–1323

    Article  Google Scholar 

  • Dorairaj S and Allen TW (2007) On the thermodynamic stability of a charged arginine side chain in a transmembrane helix. Proc Natl Acad Sci USA 104(12): 4943–4948

    Article  Google Scholar 

  • Elofsson A and von Heijne G (2007) Membrane protein structure: prediction versus reality. Annu Rev Biochem 76: 125–140

    Article  Google Scholar 

  • Feig M (2008) Implicit membrane models for membrane protein simulation. Method Mol Biol 443: 181–196

    Article  Google Scholar 

  • Fleishman SJ and Ben-Tal N (2006) Progress in structure prediction of alpha-helical membrane proteins. Curr Opin Struct Biol 16(4): 496–504

    Article  Google Scholar 

  • Fleishman SJ, Unger VM, Yeager M, Ben-Tal N (2004) A Calpha model for the transmembrane alpha helices of gap junction intercellular channels. Mol Cell 15(6): 879–888

    Article  Google Scholar 

  • Fleishman SJ, Harrington SE, Enosh A, Halperin D, Tate CG, Ben-Tal N (2006) Quasi-symmetry in the cryo-EM structure of EmrE provides the key to modeling its transmembrane domain. J Mol Biol 364(1): 54–67

    Article  Google Scholar 

  • Forrest LR, Tang CL, Honig B (2006) On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. Biophys J 91(2): 508–517

    Article  Google Scholar 

  • Fuchs A, Kirschner A, Frishman D (2009) Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks. Proteins 74(4): 857–871

    Article  Google Scholar 

  • Gurezka R, Laage R, Brosig B, Langosch D (1999) A heptad motif of leucine residues found in membrane proteins can drive self-assembly of artificial transmembrane segments. J Biol Chem 274(14): 9265–9270

    Article  Google Scholar 

  • Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, et al. (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433(7024): 377–381

    Article  Google Scholar 

  • Im W and Brooks CL III (2005) Interfacial folding and membrane insertion of designed peptides studied by molecular dynamics simulations. Proc Natl Acad Sci USA 102(19): 6771–6776

    Article  Google Scholar 

  • Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, et al. (2008) The 2.6 Angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322(5905): 1211–1217

    Article  Google Scholar 

  • Jones DT (1997) Successful ab initio prediction of the tertiary structure of NK-lysin using multiple sequences and recognized supersecondary structural motifs. Proteins (Suppl 1): 185–191

    Article  Google Scholar 

  • Jones DT (2007) Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23(5): 538–544

    Article  Google Scholar 

  • Kall L, Krogh A, Sonnhammer EL (2005) An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 21(Suppl 1): i251–i257

    Article  Google Scholar 

  • Kauko A, Illergard K, Elofsson A (2008) Coils in the membrane core are conserved and functionally important. J Mol Biol 380(1): 170–180

    Article  Google Scholar 

  • Kim H, Melen K, Osterberg M, von Heijne G (2006) A global topology map of the Saccharomyces cerevisiae membrane proteome. Proc Natl Acad Sci USA 103(30): 11142–11147

    Article  Google Scholar 

  • Korkhov VM and Tate CG. An emerging consensus for the structure of EmrE. Acta Crystallogr D Biol Crystallogr 65(Pt 2): 186–192

    Google Scholar 

  • Lau TL, Kim C, Ginsberg MH, Ulmer TS (2009) The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling. EMBO J 28(9): 1351–1361

    Article  Google Scholar 

  • Lazaridis T (2005) Implicit solvent simulations of peptide interactions with anionic lipid membranes. Proteins 58(3): 518–527

    Article  Google Scholar 

  • Lazaridis T and Karplus M (2003) Thermodynamics of protein folding: a microscopic view. Biophys Chem 100(1–3): 367–395

    Article  Google Scholar 

  • Lee J, Chen J, Brooks CL III, Im W (2008) Application of solid-state NMR restraint potentials in membrane protein modeling. J Magn Reson 193(1): 68–76

    Article  Google Scholar 

  • Lemmon MA, Flanagan JM, Hunt JF, Adair BD, Bormann BJ, Dempsey CE, et al. (1992) Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. J Biol Chem 267(11): 7683–7689

    Google Scholar 

  • Li W, Zhang Y, Skolnick J (2004) Application of sparse NMR restraints to large-scale protein structure prediction. Biophys J 87(2): 1241–1248

    Article  Google Scholar 

  • Li Y and Goddard WA III (2008) Prediction of structure of G-protein coupled receptors and of bound ligands, with applications for drug design. Pac Symp Biocomput: 344–353

    Google Scholar 

  • Lo A, Chiu YY, Rodland EA, Lyu PC, Sung TY, Hsu WL (2009) Predicting helix-helix interactions from residue contacts in membrane proteins. Bioinformatics 25(8): 996–1003

    Article  Google Scholar 

  • Maeda S, Nakagawa S, Suga M, Yamashita E, Oshima A, Fujiyoshi Y, et al. (2009) Structure of the connexin 26 gap junction channel at 3.5 A resolution. Nature 458(7238): 597–602

    Article  Google Scholar 

  • Melen K, Krogh A, von Heijne G (2003) Reliability measures for membrane protein topology prediction algorithms. J Mol Biol 327(3): 735–744

    Article  Google Scholar 

  • Michino M, Abola E, Brooks CL III, Dixon JS, Moult J, Stevens RC (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nat Rev Drug Discov 8(6): 455–463

    Article  Google Scholar 

  • Mottamal M and Lazaridis T (2005) The contribution of C alpha-H...O hydrogen bonds to membrane protein stability depends on the position of the amide. Biochemistry 44(5): 1607–1613

    Article  Google Scholar 

  • Mottamal M, Zhang J, Lazaridis T (2006) Energetics of the native non-native states of the glycophorin transmembrane helix dimer. Proteins 62(4): 996–1009

    Article  Google Scholar 

  • Nugent T and Jones DT (2009) Transmembrane protein topology prediction using support vector machines. BMC Bioinform 10: 159

    Article  Google Scholar 

  • Pellegrini-Calace M, Carotti A, Jones DT (2003) Folding in lipid membranes (FILM): a novel method for the prediction of small membrane protein 3D structures. Proteins 50(4): 537–545

    Article  Google Scholar 

  • Popot JL and Engelman DM (1990) Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29(17): 4031–4037

    Article  Google Scholar 

  • Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using Rosetta. Method Enzymol 383: 66–93

    Article  Google Scholar 

  • Roux B (2002) Theoretical and computational models of ion channels. Curr Opin Struct Biol 12(2): 182–189

    Article  Google Scholar 

  • Sale K, Faulon JL, Gray GA, Schoeniger JS, Young MM (2004) Optimal bundling of transmembrane helices using sparse distance constraints. Protein Sci 13(10): 2613–2627

    Article  Google Scholar 

  • Sal-Man N, Gerber D, Bloch I, Shai Y (2007) Specificity in transmembrane helix-helix interactions mediated by aromatic residues. J Biol Chem 282(27): 19753–19761

    Article  Google Scholar 

  • Senes A, Chadi DC, Law PB, Walters RF, Nanda V, Degrado WF (2007) E(z), a depth-dependent potential for assessing the energies of insertion of amino acid side-chains into membranes: derivation and applications to determining the orientation of transmembrane and interfacial helices. J Mol Biol 366(2): 436–448

    Article  Google Scholar 

  • Shacham S, Marantz Y, Bar-Haim S, Kalid O, Warshaviak D, Avisar N, et al. (2004) PREDICT modeling and in-silico screening for G-protein coupled receptors. Proteins 57(1): 51–86

    Article  Google Scholar 

  • Simons KT, Kooperberg C, Huang E, Baker D (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 268(1): 209–225

    Article  Google Scholar 

  • Tanizaki S and Feig M (2005) A generalized Born formalism for heterogeneous dielectric environments: application to the implicit modeling of biological membranes. J Chem Phys 122(12): 124706

    Article  Google Scholar 

  • Topf M, Lasker K, Webb B, Wolfson H, Chiu W, Sali A (2008) Protein structure fitting and refinement guided by cryo-EM density. Structure 16(2): 295–307

    Article  Google Scholar 

  • Tusnády GE and Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17(9): 849–850

    Article  Google Scholar 

  • Vaidehi N, Floriano WB, Trabanino R, Hall SE, Freddolino P, Choi EJ, et al. (2002) Prediction of structure and function of G protein-coupled receptors. Proc Natl Acad Sci USA 99(20): 12622–12627

    Article  Google Scholar 

  • Viklund H and Elofsson A (2004) Best alpha-helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information. Protein Sci 13(7): 1908–1917

    Article  Google Scholar 

  • Viklund H and Elofsson A (2008) OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 24(15): 1662–1668

    Article  Google Scholar 

  • Viklund H, Bernsel A, Skwark M, Elofsson A (2008) SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. Bioinformatics 24(24): 2928–2929

    Article  Google Scholar 

  • Walters RF and DeGrado WF (2006) Helix-packing motifs in membrane proteins. Proc Natl Acad Sci USA 103(37): 13658–13663

    Article  Google Scholar 

  • Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, et al. (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454(7203): 486–491

    Article  Google Scholar 

  • Wu J and Kaback HR (1996) A general method for determining helix packing in membrane proteins in situ: helices I and II are close to helix VII in the lactose permease of Escherichia coli. Proc Natl Acad Sci USA 93(25): 14498–14502

    Article  Google Scholar 

  • Wu J, Voss J, Hubbell WL, Kaback HR (1996) Site-directed spin labeling and chemical crosslinking demonstrate that helix V is close to helices VII and VIII in the lactose permease of Escherichia coli. Proc Natl Acad Sci USA 93(19): 10123–10127

    Article  Google Scholar 

  • Yarov-Yarovoy V, Schonbrun J, Baker D (2006) Multipass membrane protein structure prediction using Rosetta. Proteins 62(4): 1010–1025

    Article  Google Scholar 

  • Zhang Y, Devries ME, Skolnick J (2006) Structure modeling of all identified G protein-coupled receptors in the human genome. PLoS Comput Biol 2(2): e13

    Article  Google Scholar 

  • Zhao M, Zen KC, Hubbell WL, Kaback HR (1999) Proximity between Glu126 and Arg144 in the lactose permease of Escherichia coli. Biochemistry 38(23): 7407–7412

    Article  Google Scholar 

  • Zhou FX, Merianos HJ, Brunger AT, Engelman DM (2001) Polar residues drive association of polyleucine transmembrane helices. Proc Natl Acad Sci USA 98(5): 2250–2255

    Article  Google Scholar 

  • Zhu J, Luo BH, Barth P, Schonbrun J, Baker D, Springer TA (2009) The structure of a receptor with two associating transmembrane domains on the cell surface: integrin alphaIIbbeta3. Mol Cell 34(2): 234–249

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Barth, P. (2010). Prediction of three-dimensional transmembrane helical protein structures. In: Structural Bioinformatics of Membrane Proteins. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0045-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0045-5_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0044-8

  • Online ISBN: 978-3-7091-0045-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics