A Hierarchical Basis Multigrid Method for Unstructured Grids

  • Randolph E. Bank
  • Jinchao Xu
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NONUFM)


This paper is concerned with the application of the hierarchical basis method to completely unstructured grids in two dimensional space. A two level method is presented and analyzed. Generalization to the multilevel case is also discussed with numerical examples demonstrating the efficiency of the algorithm.

Key words

Finite element hierarchical basis multigrid 65F10 65N20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. E. Bank, Hierarchical preconditioners for elliptic partial differential equations, in Proceedings of the SERC Summer Workshop in Numerical Analysis, 1992.Google Scholar
  2. [2]
    —, PLTMG: A Software Package for Solving Elliptic Partial Differential Equations, Users’ Guide 7.0, Frontiers in Applied Mathematics, SIAM, Philadelphia, 1994.Google Scholar
  3. [3]
    R. E. Bank and T. F. Dupont, Analysis of a two level scheme for solving finite element equations, Tech. Report CNA-159, Center for Numerical Analysis, University of Texas at Austin, 1980.Google Scholar
  4. [4]
    R. E. Bank, T. F. Dupont, and H. Yserentant, The hierarchical basis multigrid method, Numer. Math., 52 (1988), pp. 427–458.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    R. E. Bank, A. H. Sherman, and A. Weiser, Refinement algorithms and data structures for regular local mesh refinement, in Scientific Computing (Applications of Mathematics and Computing to the Physical Sciences) (ed. R. S. Stepleman), North Holland, 1983, pp. 3-17.Google Scholar
  6. [6]
    R. E. Bank and J. Xu, Hierarchical basis multigrid methods for unstructured grids: Algorithm and theory, (in preparation).Google Scholar
  7. [7]
    —, The hierarchical basis multigrid method and incomplete L U decomposition, in Proceedings of Seventh International Conference on Domain Decomposition. (ed. D. Keyes and J. Xu), AMS, (to appear).Google Scholar
  8. [8]
    F. Bornemann and H. Yserentant, A basic norm equivalence for the theory of multigrid methods, Numer. Math., 64 (1993), pp. 455–476.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    J. Bramble, J. Pasciak, and J. Xu, The analysis of multigrid algorithms with non-imbedded spaces or non-inherited quadratic forms, Math. Comp., 56 (1991), pp. 1–43.MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. [10]
    M. Griebel and P. Oswald, Remarks on the abstract theory of additive and multiplicative Schwarz algorithms, Tech. Report TUM-19314, Institut für Informatik, Technische Universität München, 1993.Google Scholar
  11. [11]
    W. Hackbusch, Multigrid Methods and Applications, Springer-Verlag, Berlin, 1985.CrossRefGoogle Scholar
  12. [12]
    W. Hackbusch and G. Wittum, eds, Incomplete Decompositions-Algorithms, Theory and Applications, Notes on Numerical Fluid mechanics, vol. 41, Vieweg, Braunschweig, 1993.Google Scholar
  13. [13]
    R. Kornhuber, Monotone multigrid methods for variational inequalities I, Numer. Math., (to appear).Google Scholar
  14. [14]
    P. Oswald, On discrete norm estimates related to multigrid preconditioners in the finite element method, in Proceedings of the International Conference on Constructive Theory of Functions, Varna, 1991.Google Scholar
  15. [15]
    —, Stable subspace splittings for sobolev spaces and thier aqpplications, Tech. Report Math/93/7, Friedrich-Schiller-Universität Jena, 1993.Google Scholar
  16. [16]
    J. Xu, Theory of Multilevel Methods, PhD thesis, Cornell University. Report AM-48, Penn State, 1989.Google Scholar
  17. [17]
    —, Iterative methods by space decomposition and subspace correction, SIAM Review, 34 (1992), pp. 581–613.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    H. Yserentant, On the multi-level splitting of finite element spaces, Numer. Math., 49 (1986), pp. 379–412.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    —, Old and new convergence proofs for multigrid methods, Acta Numerica, (1992).Google Scholar
  20. [20]
    S. Zhang, Multilevel Iterative Techniques, PhD thesis, Pennsylvania State University, Department of Mathematics Report 88020, 1988.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1995

Authors and Affiliations

  • Randolph E. Bank
    • 1
  • Jinchao Xu
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaSan Diego, La JollaUSA
  2. 2.Department of MathematicsPenn State UniversityUniversity ParkUSA

Personalised recommendations