Skip to main content

2-dimensional nonlinear sigma models: zero curvature and Poisson structure

  • Chapter
Harmonic Maps and Integrable Systems

Part of the book series: Aspects of Mathematics ((ASMA,volume E 23))

Abstract

In this chapter some aspects of two-dimensional nonlinear sigma models are discussed. The solutions to the field equations are (pseudo-)harmonic maps of two-dimensional Minkowski space into some homogeneous Riemannian manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. R. Abraham and J. Marsden, Foundations of Mechanics, Addison-Wesley, 1978.

    Google Scholar 

  2. J. Avan and M. Talon, Rational and trigonometric constant non-antisymmetric r-matrices, Phys. Lett. B 241 (1990), 77–82.

    Google Scholar 

  3. O. Babelon and C.-M. Viallet, Hamiltonian structures and Lax equations, Phys. Lett. 237 B (1990), 411–416.

    Google Scholar 

  4. M. Bordemann, Generalized Lax pairs, the modified classical Yang-Baxter-equation, and affine geometry of Lie groups, Comm Math. Phys. 135 (1990), 201–216.

    Google Scholar 

  5. M. Bordemann, Nondegenerate bilinear forms on nonassociative algebras, Universität Freiburg preprint THEP 92 /3, April 1992.

    Google Scholar 

  6. M. Bordemann, M Forger and H. Römer, Homogeneous Kähler manifolds: Paving the way to new supersymmetric sigma models, Comm Math. Phys. 102 (1986), 605–647.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Bordemann, M. Forger, J. Laartz and U. Schäper, The Lie-Poisson structure of integrable classical non-linear sigma models, Comm. Math. Phys. 152 (1993), 167–190.

    Article  MathSciNet  MATH  Google Scholar 

  8. F.E. Burstall, D. Ferus, F. Pedit and U. Pinkall, Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras, Ann. of Math. 138 (1993), 173–212.

    Article  MathSciNet  MATH  Google Scholar 

  9. H.J. de Vega, H. Eichenherr and J.-M. Maillet, Classical and quantum algebras of non-local charges in sigma models, Comm Math. Phys. 92 (1984), 507–524.

    Article  MATH  Google Scholar 

  10. H. Eichenherr, SU(N)-invariante nichtlineare sigma-modelle, Universität Heidelberg, Fakultät für Physik und Astronomie, Dissertation SS 78–2 (1978); published as: SU(N)-invariant nonlinear a-models, Nuclear Physics B 146 (1978), 215–223.

    Google Scholar 

  11. H. Eichenherr and M. Forger, On the dual symmetry of the nonlinear sigma models, Nucl. Phys. B 155 (1979), 381–393.

    Google Scholar 

  12. H. Eichenherr and M. Forger, More about nonlinear sigma models on symmetric spaces,Nucl. Phys. B 164 (1980), 528–535 and B 282 (1987), 745–746 (erratum).

    Google Scholar 

  13. H. Eichenherr and M. Forger, Higher local conservation laws for nonlinear sigma models on symmetric spaces, Comm Math. Phys. 82 (1981), 227–255.

    Article  MathSciNet  MATH  Google Scholar 

  14. L.D. Faddeev and L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin 1987.

    Book  MATH  Google Scholar 

  15. M. Forger, Nonlinear sigma models on symmetric spaces. In: Nonlinear Partial Differential Operators and Quantization Procedures, Proceedings, Clausthal, Germany 1981, ed. S.I. Andersson and H.D. Doebner, Lect. Notes in Math. 1037, Springer-Verlag, Berlin 1983.

    Google Scholar 

  16. M. Forger, Differential Geometric Methods in Nonlinear a-models and Gauge Theories, Dissertation, FU Berlin, Fachbereich Physik, 1979.

    Google Scholar 

  17. M. Forger, J. Laartz and U. Schäper, Current algebra of classical non-linear sigma models, Comm. Math. Phys. 146 (1992), 397–402.

    Article  MATH  Google Scholar 

  18. L. Freidel and J.M. Maillet, Quadratic algebras and integrable systems,preprint LPTHE-24/91; On classical and quantum integrable field theories associated to KacMoody current algebras,preprint LPTHE-25/91.

    Google Scholar 

  19. M. Gell-Mann and M. Lévy, The axial vector current in beta decay, Nuovo Cimento 16 (1960), 705–726.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York 1978.

    Google Scholar 

  21. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience, New York, 1963 ( Vol.I) and 1969 ( Vol.II).

    Google Scholar 

  22. B. Kostant, On differential geometry and homogeneous spaces II, Proc. Nat. Acad. Sci. 42 (1956), 354–357.

    Article  MATH  Google Scholar 

  23. M. Löscher and K. Pohlmeyer, Scattering of massless lumps and nonlocal charges in the two-dimensional nonlinear a-model, Nuclear Physics B 137 (1978), 46–54.

    Google Scholar 

  24. J.-M. Maillet, Kac-Moody algebra and extended Yang-Baxter relations in the 0(N) non-linear sigma model, Phys. Lett. 162 B (1985), 137–142.

    Google Scholar 

  25. J.-M. Maillet, Hamiltonian structures for integrable classical theories from graded Kac-Moody algebras,Phys. Lett. 167 B (1986), 401–405.

    Google Scholar 

  26. J.-M. Maillet, New integrable canonical structures in two-dimensional models, Nucl. Phys. B 269 (1986), 54–76.

    Google Scholar 

  27. M. Malias, The principal chiral model as an integrable system,this volume.

    Google Scholar 

  28. L. Michel, Minima of Higgs-Landau polynomials, CERN preprint Ref.Th.2716-CERN (1979).

    Google Scholar 

  29. K. Pohlmeyer, Integrable Hamiltonian systems and interactions through quadratic constraints, Comm. Math. Phys. 46 (1976), 207–221.

    Article  MATH  Google Scholar 

  30. M.A. Semenov-Tyan-Shanskii, What is a classical r-matrix, Funk. Anal. i Prilozh. 17 (1983), 17–33; English transl.: Funct. Anal. Appl. 17 (1983), 259–272.

    MATH  Google Scholar 

  31. K. Uhlenbeck, Harmonic maps into Lie groups (Classical solutions of the chiral model), J. Diff. Geom. 30 (1989), 1–50.

    Google Scholar 

  32. J.C. Wood, Harmonic maps into symmetric spaces and integrable systems,this volume.

    Google Scholar 

  33. V.E. Zakharov and A.V. Mikhailov, Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method, Zh. Eksp. Teor. Fiz. 74 (1978), 1953–1973); Engl transi.: Soy. Phys. JETP 47 (6) (1978), 1017–1027.

    MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Bordemann, M., Forger, M., Laartz, J., Schäper, U. (1994). 2-dimensional nonlinear sigma models: zero curvature and Poisson structure. In: Fordy, A.P., Wood, J.C. (eds) Harmonic Maps and Integrable Systems. Aspects of Mathematics, vol E 23. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-14092-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-14092-4_8

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-06554-6

  • Online ISBN: 978-3-663-14092-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics