Advertisement

Calculation of Separated Flows with a Two-Layer Turbulence Model

Chapter
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NONUFM, volume 40)

Summary

A two-layer turbulence model is described which uses the standard k-ε model in the bulk of the flow and resolves the viscosity-affected regions near walls with a one-equation model based on empirical length-scale prescriptions. Applications of the two-layer model to the following separated flows are presented: flow over a backward-facing step, over a T-profile, over a channel bed with periodic dunes and past an airfoil at 14° angle of attack. In all cases with larger separation regions, the two-layer model yielded a significant improvement of the predictions compared with the standard k-ε model using wall functions; in particular the length of the separation region is predicted in better agreement with the experiments.

Keywords

Shear Layer Separate Flow Wall Function Separation Region Reattachment Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Rodi, W.: “Experience with two-layer turbulence models combining the k-e model with a one-equation model near the wall”, AIAA Paper 91–0216 (1991).Google Scholar
  2. [2]
    Patel, V.C., Rodi, W., Scheuerer, G.: “Turbulence models for near-wall and low-Reynolds number flows: A review”, AIAA J., Vol. 23, pp. 1308–1319 (1985).MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    Shih, T.H., Mansour, N.N.: “Modelling of near-wall turbulence”, in Eng. Turbulence Modelling and Experiments, eds. W. Rodi, E.N. Ganic’, Elsevier, pp. 13–22 (1990).Google Scholar
  4. [4]
    Rodi, W., Scheuerer, G.: “Scrutinizing the k-e model under adverse pressure gradient conditions”, J. Fluids Eng., 108, pp. 174–179 (1986).CrossRefGoogle Scholar
  5. [5]
    Iacovides, H., Launder, B.E.: “The numerical simulation of flow and heat transfer in tubes in orthogonal-mode rotation”, Proc. 6th Symp. on Turbulent Shear Flows, Toulouse (1987).Google Scholar
  6. [6]
    Chen, H.C., Patel, V.C.: “Near-wall turbulence models for complex flows including separation”, AIAA J., Vol. 26, pp. 641–648 (1988).ADSCrossRefGoogle Scholar
  7. [7]
    Yap, C.L.: “Turbulent heat and momentum transfer in recirculating and impinging flows”, Ph.D. Thesis, UMIST, Manchester (1987).Google Scholar
  8. [8]
    Wolfshtein, M.: “The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient”, Int. J. Heat Mass Transfer, 12, pp. 301–318 (1969).Google Scholar
  9. [9]
    Cordes, J.: “Entwicklung eines Zweischichten-Turbulenzmodells und seine Anwendung auf abgelöste, zweidimensionale Strömungen”, Dissertation Universität Karlsruhe (1992).Google Scholar
  10. [10]
    Norris, L.H., Reynolds, W.C.: “Turbulent channel flow with a moving wavy boundary”, Rept. No. FM-10, Stanford University, Dept. Mech. Eng. (1975).Google Scholar
  11. [11]
    Rodi, W., Mansour, N.N.: “One-equation near-wall turbulence modelling with the aid of direct simulation data”, Proc. 1990 CTR Summer Program, Stanford University (1990).Google Scholar
  12. [12]
    Fujisawa, N., Rodi, W., Schönung, B.: “Calculation of transitional boundary layers with a two-layer model of turbulence”, Proc. 3rd Int. Symp. on Transport Phenomena in Dynamics of Rotating Machinery, Honolulu (1990).Google Scholar
  13. [13]
    Gosman, A.D., Pun, W.M.: “Calculation of recirculating flows”, Lecture Notes for Course entitled “TEACH”, Imperial College, London (1973).Google Scholar
  14. [14]
    Majumdar, S.: “Development of a finite-volume procedure for prediction of fluid flow problems with complex irregular boundaries”, Rept. SFB 210/ry29, Universität Karlsruhe (1986).Google Scholar
  15. [15]
    Zhu, J.: “A low-diffusive and oscillation-free convection scheme”, Commun. in Appl. Num. Meth., 7, pp. 225–232 (1991).Google Scholar
  16. [16]
    Driver, D.M., Seegmiller, H.J.: “Features of reattaching turbulent shear layer in divergent channel flow”, AIAA J., 23, pp. 163–171 (1985).ADSCrossRefGoogle Scholar
  17. [17]
    Leschziner, M.A., Rodi, W.: “Calculation of annular and twin parallel jets using various discretization schemes and turbulence model variations”, J. Fluids Eng., 103, pp. 352–360 (1981).CrossRefGoogle Scholar
  18. [18]
    Jaroch, M., Fernholz, H.-H.: “The three-dimensional character of a nominally two-dimensional separated turbulent shear flow”, J. Fluid Mech., 205, pp. 523–552 (1989).ADSCrossRefGoogle Scholar
  19. [19]
    Fernholz, H.-H., private communcation (1992)Google Scholar
  20. [20]
    IAHR Working Group on Refined Modelling of Flows, Test Problem for 13th meeting, Delft Hydraulics (1986).Google Scholar
  21. [21]
    Scheuerer, G.: “Entwicklung eines Verfahrens zur Berechnung zweidimensionaler Grenzschichten an Gasturbinenschaufeln”, Dissertation Universität Karlsruhe (1983).Google Scholar
  22. [22]
    Coles, D., Wadcock, A.J.: “Flying-hot-wire study of flow past an NACA 4412 airfoil at maximum lift”, AIAA J., 17, pp. 321–329 (1979).Google Scholar
  23. [23]
    Wadcock, A.J.: “Investigation of low-speed turbulent separated flow around airfoils”, NASA CR 177450 (1987).Google Scholar
  24. [24]
    Rhie, C.M.: “A numerical study of the flow past an isolated airfoil with separation”, PH.D. Thesis, University of Illinois at Urbana Champaign (1981).Google Scholar
  25. [25]
    Bührle, P. “Numerische Berechnung der abgelösten Strömung über eine zur Anströmung senkrechte ebene Platte mit einer zur Anströmung parallelen Trennplatte in der Symmetrieebene”, Studienarbeit Institut für Hydromechanik, Universität Karlsruhe (1989).Google Scholar
  26. [26]
    Kline, S.J., Cantwell, B.J., Lilley, G.M.: Proc. 1980–81 AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows, Stanford University (1982).Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1993

Authors and Affiliations

  1. 1.Institute for HydroemchanicsUniversity of KarlsruheKarlsruheF.R. Germany

Personalised recommendations