Skip to main content

On the Effects of Spatial Resolution and Subgrid-Scale Modeling in the Large Eddy Simulation of a Recirculating Flow

  • Conference paper
Proceedings of the Ninth GAMM-Conference on Numerical Methods in Fluid Mechanics

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NNFM,volume 35))

Summary

The influence of spatial resolution and subgrid-scale modeling on the results of large eddy simulations (LES) of a turbulent, recirculating flow is discussed. A series of simulations of the high Reynolds number turbulent flow over a backward-facing step have been performed and compared with experimental data. In these calculations the grid spacing and spanwise (homogeneous) dimension of the computational domain have been systematically varied. Two different eddy-viscosity-type, subgrid-scale (SGS) models have been employed to model the fine scale effects of turbulence in the flow. It is shown that the time-averaged flow variables are profoundly influenced by the dimensions of the computational domain in the spanwise direction. Results obtained with the two SGS models are qualitatively similar although distinct differences exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kline, S.J., Cantwell, B.J. and Lilley, G.M. (eds.) “Proc. 1980–1 AFOSR.HTTMStanford Conf. on Complex Turbulent Flows”, Stanford University, Stanford, CA, Vols. I-III (1982).

    Google Scholar 

  2. Bradshaw, P., Launder, B.E. and Lumley, J.L.: “Collaborative Testing of Turbulence Models”, AIAA Paper No. AIAA-91–0215 (1991).

    Google Scholar 

  3. Peric, M., Rüger, M. and Scheuerer, G.: “A finite volume multigrid method for calculating turbulent flows”, Proc. 7th Symp. on Turbulent Shear Flows, Vol. 1, Stanford University, Stanford, CA (1989), pp. 7.3.1–7. 3. 6.

    Google Scholar 

  4. Friedrich, R. and Arnal, M.: “Analysing turbulent backward-facing step flow with the lowpass-filtered Navier-Stokes equations”, J. Wind Eng. and Ind. Aero., 35 (1990) pp. 101–128.

    Article  MathSciNet  Google Scholar 

  5. Schumann, U.: “Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli”, J. Comp. Phys., 18 (1975) pp. 376–404.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Smagorinsky, J.S.: “General circulation experiments with the primitive equations”, Mon. Weather Rev., 91 (1963) pp. 99–164.

    Article  ADS  Google Scholar 

  7. Lilly, D.K.: “The representation of small-scale turbulence in numerical simulation experiments”, Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, IBM Form No. 320–1951 (1967) pp. 195–210.

    Google Scholar 

  8. Chorin, A.J.: “Numerical solution of the Navier-Stokes equations”, Math. of Comp., 22 (1968) pp. 745–762.

    Article  MathSciNet  MATH  Google Scholar 

  9. Schmitt, L. and Friedrich, R.: “Large-eddy simulation of turbulent backward facing step flow”, Notes on Numerical Fluid Mechanics 20, Vieweg Verlag Braunschweig 1988, pp. 355–362.

    Google Scholar 

  10. Richter, K., Friedrich, R. and Schmitt, L.: “Large-eddy simulation of turbulent wall boundary layers with pressure gradient”, Proc. 6th Symp. on Turbulent Shear Flows, Paul Sabatier University, Toulouse, France (1987), pp. 22.3.1–22. 3. 7.

    Google Scholar 

  11. Piomelli, U., Ferziger, J., Moin, P. and Kim, J.: “New approximate boundary condi-tions for large-eddy simulations of wall-bounded flows”, Phys. Fluids A, 1 (1989) pp. 1061–1068.

    Article  ADS  Google Scholar 

  12. Tropea, C.: “Die turbulente Strömung in Flachkanälen und offenen Gerinnen”, Dissertation, University of Karlsruhe, Karlsruhe, Germany (1982).

    Google Scholar 

  13. Durst, F. and Schmitt, F.S.: “Experimental study of high Reynolds number backward-facing step flow”, Proc. 5th Symp. on Turbulent Shear Flows, Cornell University, Ithaca, NY (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Fachmedien Wiesbaden

About this paper

Cite this paper

Arnal, M., Friedrich, R. (1992). On the Effects of Spatial Resolution and Subgrid-Scale Modeling in the Large Eddy Simulation of a Recirculating Flow. In: Vos, J.B., Rizzi, A., Ryhming, I.L. (eds) Proceedings of the Ninth GAMM-Conference on Numerical Methods in Fluid Mechanics. Notes on Numerical Fluid Mechanics (NNFM), vol 35. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-13974-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-13974-4_1

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-07635-1

  • Online ISBN: 978-3-663-13974-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics