Skip to main content

Eine kurze Literaturübersicht über Arbeiten zum Phasenübergang

  • Chapter
Wärme- und Stoffübertragung in Zweiphasenströmungen

Zusammenfassung

Da eine umfangreiche Literaturübersicht über Forschungsergebnisse zu Phasenübergangsphänomen ein eigenes Buch füllen würde, soll in diesem Kapitel nur eine bewußt kurzgehaltene Übersicht über Veröffentlichungen zu diesem Thema gegeben werden. Man kann die Arbeiten in eine Gruppe, die sich schwerpunktmäßig mit der Geometrie der Strömung beschäftigt, und eine andere Gruppe, die Stoff- und Wärmeübergangsphänomene untersucht, einteilen. In der ersten Gruppe wird die Ausdehnung der Phasengrenzfläche oft in Form einer auf das Rohrvolumen bezogenen Grenzflächenkonzentration mit der Dimension 1/m angegeben. In der zweiten Gruppe konzentriert sich die Arbeit meist auf die Bestimmung von Wärme- und Stoffibergangskoeffizienten. Für die einzelnen Strömungsformen werden im folgenden die wesentlichen Arbeiten der beiden Gruppen zusammengestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Scriven, L. E. On the dynamics of phase growth. Chemical Engineering Science, 1959, Vol. 10, S. 1–13.

    Article  Google Scholar 

  2. Stralen, S. J. D. van: The growth rate of vapour bubbles in superheated pure liquids and binary mixtures. Part I + II, Int. J. Heat and Mass Transfer, 1968, Vol. 11, S. 1467–1512.

    Article  Google Scholar 

  3. Durst, F., und Beer, H.: Blasenbildung an Düsen bei Gasdispersionen in Flüssigkeiten. ChemieIngenieur-Technik, 1969, Vol. 41, S. 1000–1006.

    Article  Google Scholar 

  4. Theofanous, T., Biasi, L., Isbin, H. S., und Fauske, H.: A theoretical study on bubble growth in constant and time-dependent pressure fields. Chemical Engineering Science, 1969, Vol. 24, S. 885897.

    Google Scholar 

  5. Florschuetz, L. W., und Chao, B. T.: On the Mechanics of Bubble Collapse. J. Heat Transfer, 1965, Vol. 87, S. 209–220.

    Article  Google Scholar 

  6. Delmas, H., und Angelino, H.: Vapor Bubble Collapse–The Influence of the Initial Radius and of Subcooling. Chemical Engineering Science, 1977, Vol. 32, S. 723–727.

    Article  Google Scholar 

  7. Moalem, D., und Sideman, S.: The Effect of Motion on Bubble Collapse. Int. J. Heat and Mass Transfer, 1973, Vol. 16, S. 2321–2329.

    Article  Google Scholar 

  8. Voloshko, A. A.: Condensation of Vapor Bubbles in Liquid. Theoreticheaki Osnovy Khimicheskoi, Tekhndogii, 1973, Vol. 7, S. 269–272.

    Google Scholar 

  9. Dimic, M.: Collapse of One-Component Vapor Bubbles with Translatory Motion. Int. J. Heat and Mass Transfer, 1977, Vol. 20, S. 1322–1325.

    Article  Google Scholar 

  10. Akiyama, M.: Bubble Collapse in Subcooled Boiling. Bulletin of the JSME, 1973, Vol. 16, 93, S. 530–575.

    Article  Google Scholar 

  11. Sonnekalb, M.: Absorption von Ammoniak-Gas in einer wässrigen Ammoniaklösung im Absorber einer Absorptions-Kältemaschine. Diplomarbeit, Technische Hochschule Darmstadt, 1990.

    Google Scholar 

  12. Collier, J. G.: Convective Boiling and Condensation. McGraw-Hill, New York, 1981, 2nd ed., S. 72–75.

    Google Scholar 

  13. Hinze, J. O.: Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes, A.I.Ch. E. J., 1955, Vol. 1, Nr. 3, S. 289–295.

    Google Scholar 

  14. Sevik, M., und Park, S. H.: The Splitting of Drops and Bubbles by Turbulent Fluid Flow. J. Fluids Engineering, Trans ASME, 1973, S. 53–60.

    Google Scholar 

  15. Thomas, R. M.: Bubble Coalescence inTurbulent Flows. Int. J. Multiphase Flow, 1981, Vol. 7, Nr. 6, S. 709–717.

    Article  Google Scholar 

  16. Colin, C., Fabre, J., und Dukler, A. E.: Gas-Liquid Flow at Microgravity Conditions–I Dispersed Bubble and Slug Flow. Int. J. Multiphase Flow, 1991, Vol. 17, Nr. 4, S. 533–544.

    Article  MATH  Google Scholar 

  17. Kou-Shing Liang: Experimental and Analytical Study of Direct Contact Condensation of Steam in Water. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, 1991.

    Google Scholar 

  18. Murdock, J. W.: An Investigation of High Velocity Flashing Flow in a Straight Tube. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, 1967.

    Google Scholar 

  19. Bornhorst, W. J., und Hatsopoulos, G. N.: Bubble-Growth Calculation Without Neglect of Interfacial Discontinuities. J. Applied Mechanics–Transactions of the ASME, Dec. 1967, S. 847–853.

    Google Scholar 

  20. Wang, H., und Touber, S.: Distributed and non-steady-state modeling of an air cooler. Int. J. Refrig., 1991, Vol. 14, S. 98–111.

    Article  Google Scholar 

  21. Hancox, W. T., und Nicoll, W. B.: A general technique for the prediction of void distributions in non-steady two-phase forced convection. Int. J. Heat and Mass Transfer, 1971, Vol. 14, S. 1377–1394.

    Article  Google Scholar 

  22. Levy, S.: Stream slip–theoretical prediction from momentum model. J. Heat Transfer, 1960, S. 113–123.

    Google Scholar 

  23. Zivi, S. M.: Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production. J. Heat Transfer, 1964, Vol. 86, S. 247–252.

    Article  Google Scholar 

  24. Marchaterre, J. F., und Hoglund, B. M.: Correlation for two-phase flow. Nucleonics, 1962, Vol. 20, S. 142.

    Google Scholar 

  25. Bankoff, S. G.: A variable density single-fluid model for two-phase flow with particular reference to steam-water-flow. J. Heat Transfer, Trans ASME, Ser. C, 1960, Vol. 82, S. 265–276.

    Article  Google Scholar 

  26. Stephan, K.: Wärmeübertragung beim Kondensieren und Sieden. Springer, Heidelberg, 1988, S. 57–59.

    Book  Google Scholar 

  27. Johannessen, T.: A theoretical solution of the Lockhart and Martinelli flow model for calculating two-phase flow pressure and hold-up. Int. J. Heat and Mass Transfer, 1972, Vol. 15, S. 1443–1449.

    Article  Google Scholar 

  28. Cheremisinoff, N. P., und Davis, E. J.: Stratified Turbulent-Turbulent Gas-Liquid Flow. A.I.Ch. E. J., 1979, Vol. 25, S. 48–56.

    Google Scholar 

  29. Steiner, D.: Wärmeübertragung beim Sieden gesättigter Flüssigkeiten. VDI-Wärmeatlas, Düsseldorf, 1988, 5th ed., S. Hbb3-Hbb7.

    Google Scholar 

  30. Theofanous, T. G.: Modeling of Basic Condensation Processes. The Water Reactor Safety Research Workshop on Condensation, Silver Springs, MD, May 24–25, 1979.

    Google Scholar 

  31. Grossman, G., und Heath, M. T.: Simultaneous heat and mass transfer in absorption of gases in turbulent liquid films. Int. J. Heat and Mass Transfer, 1984, Vol. 24, S. 2365–2376.

    Article  Google Scholar 

  32. Rashidi, M., Hetsroni, G., und Banerjee, S.: Mechanisms of heat and mass transport at gas-liquid interfaces. Int. J. Heat and Mass Transfer, 1991, Vol. 34, S. 1799–1810.

    Article  Google Scholar 

  33. Andritsos, N., und Hanratty, T. J.: Influence of Interfacial Waves in Stratified Gas-Liquid Flows. A.I.Ch. E. J., 1987, Vol. 33, S. 444–454.

    Google Scholar 

  34. Taitel, Y., und Dukler, A. E., 1976, a.a.O.39 Murata, A., Hihara, E., und Saito, T.: Prediction of heat transfer by direct contact condensation at a steam-subcooled water interface. Int. J. Heat and Mass Transfer, 1992, Vol. 35, S. 101–109.

    Google Scholar 

  35. Ishii, M., und Mishima, K., 1980, a.a.O.

    Google Scholar 

  36. Wallis, G. B.: One dimensional two phase flow. McGraw-Hill, New York, 1969, S. 324–325.

    Google Scholar 

  37. Nabizadeh-Araghi, H.: Modellgesetze und Parameteruntersuchungen für den volumetrischen Dampfgehalt in einer Zweiphasenströmung. Dissertation, Technische Universität Hannover, 1977.

    Google Scholar 

  38. Henstock, W. H., und Hanratty, T. J.: The Interfacial Drag and the Heigth of the Wall Layer in Annular Flows. A.I.Ch. E. J., 1976, Vol. 22, S. 990–1000.

    Google Scholar 

  39. Fisher, S. A., und Pearce, D. L.: A Theoretical Model for Describing Horizontal Annular Flows. Interface Transport in Liquid Films. Central Electricity Research Laboratories, Leatherhead, England, 1979.

    Google Scholar 

  40. Laurinat, J. E., Hanratty, T. J., und Jepson, W. P.: Film Thickness Distribution for Gas-Liquid Annular Flow in a Horizontal Pipe. PCH PhysicoChemical Hydrodynamics, 1985, Vol. 6, Nr. 1/2, S. 179–195.

    Google Scholar 

  41. Butterworth, D.: Air-Water Annular Flow in a Horizontal Tube. Int. Symp. on Research in Cocurrent Gas-Liquid Flow, University of Waterloo, Ontario, 1968.

    Google Scholar 

  42. Butterworth, D.: Note on fully-developed, horizontal, annular two-phase flow. Chemical Engineering Science, 1969, Vol. 24, S. 1832–1834.

    Article  Google Scholar 

  43. Luninski, Y., Barnea, D., und Taitcl, Y.: Film Thickness in Horizontal Annular Flow. Canadian J. Chemical Engineering, 1983, Vol. 61, S. 621–626.

    Google Scholar 

  44. Fukano, T., und Ousaka. A.: Prediction of the Circumferential Distribution of Film Thickness in Horizontal and Near-Horizontal Gas-Liquid Annular Flows. Int. J. Multiphase Flow, 1989, Vol. 15, Nr. 3, S. 403–419.

    Article  Google Scholar 

  45. Hutchinson, P., und Whalley, P. B.: A possible characterization of entrainment in annular flow. Chem. Eng. Sci., 1973, Vol. 28, S. 974–975.

    Article  Google Scholar 

  46. Ambrosini, W., Andreussi, P., und Azzopardi, B. J.: A Physically Based Correlation for Drop Size in Annular Flow. Int. J. Multiphase Flow, 1991, Vol. 17, Nr. 4, S. 497–507.

    Article  MATH  Google Scholar 

  47. Paras, S. V., und Karabelas, A. J.: Droplet Entrainment and Deposition in Horizontal Annular Flow. Int. J. Multiphase Flow, 1991, Vol. 17, Nr. 4, S. 455–468.

    Article  MATH  Google Scholar 

  48. Murdock, J. W., 1967, a.a.O.

    Google Scholar 

  49. Henstock, W. H., und Hanratty, T. J.: Gas Absorption by a Liquid Layer Flowing on the wall of a Pipe. A.I.Ch. E. J., 1979, Vol. 25, S. 122–131.

    Google Scholar 

  50. Moalem Maron, D., Yacoub, N., Brauner, N., und Naot, D.: Hydrodynamic mechanisms in the horizontal slug pattern. Int. J. Multiphase Flow, 1991, Vol. 17, Nr. 2, S. 227–245.

    Article  MATH  Google Scholar 

  51. Dukler, A. E., Moalem Maron, D., und Brauner, N.: A physical model for predicting the minimum stable slug length. Chemical Engineering Science, 1985, Vol. 40, Nr. 8, S. 1379–1385.

    Article  Google Scholar 

  52. Dukler, A. E., und Hubbard, M. G.: A Model for Gas-Liquid Slug Flow in Horizontal and Near Horizontal Tubes. Ind. Eng. Chem., Fundam., 1975, Vol. 14, Nr. 4, S. 337–347.

    Article  Google Scholar 

  53. Taitel, Y., und Dukler, A. E.: A model for slug frequency during gas-liquid flow in horizontal and near horizontal pipes. Int. J. Multiphase Flow, 1977, Vol. 3, S. 585–596.

    Article  Google Scholar 

  54. Nicholson, M. K., Aziz, K., und Gregory, G. A.: Intermittent Two Phase Flow in Horizontal Pipes: Predictive Models. Canadian J. Chemical Engineering, 1978, Vol. 56, S. 653–663.

    Google Scholar 

  55. Moalem Maron, D., Yacoub, N., und Brauner, N.: New Thoughts on the Mechanism of Gas-Liquid Slug Flow. Lcttcrs in Heat and Mass Transfer, 1982, Vol. 9, S. 333–342.

    Google Scholar 

  56. Aziz, K., Gregory, G. A., und Nicholson, M.: Some Observations on the Motion of Elongated Bubbles in Horizontal Pipes. Canadian J. Chemical Engineering, 1974, Vol. 52, S. 695–702.

    Google Scholar 

  57. Ruder, Z., Hanratty, P. J., und Hanratty, T. J.: Necessary Conditions for the Existence of Stable Slugs. Int. J. Multiphase Flow, 1989, Vol. 15, Nr. 2, S. 209–226.

    Article  Google Scholar 

  58. Ruder, Z., und Hanratty, T. J.: A Definition of Gas-Liquid Plug Flow in Horizontal Pipes. Int. J. Multiphase Flow, 1990, Vol. 16, Nr. 2, S. 233–242.

    Article  MATH  Google Scholar 

  59. Gregory, G. A., und Scott, D. S.: Correlation of Liquid Slug Velocity and Frequency in Horizontal Cocurrent Gas-Liquid Slug Flow. A.I.Ch. E. J., 1969, Vol. 15, Nr. 6, S. 933–935.

    Google Scholar 

  60. Greskovich, E. J., und Shrier, A. L.: Slug Frequency in Horizontal Gas-Liquid Slug Flow. Ind. Eng. Chem., Process Des, Develop., 1972, Vol. 11, Nr. 2, S. 317–318.

    Google Scholar 

  61. Andreussi, P., und Bendiksen, K.: An Investigation of Void Fraction in Liquid Slugs for Horizontal and Inclined Gas-Liquid Pipe Flow. Int. J. Multiphase Flow, 1989, Vol. 15, Nr. 6, S. 937–946.

    Article  Google Scholar 

  62. Wallis, G. B., 1969, a.a.O., S. 299–302.

    Google Scholar 

  63. Collier, J. G., 1981, a.a.O., S. 75–77.

    Google Scholar 

  64. Oliver, D. R., und Wright, S. J.: Pressure drop and heat transfer in gas-liquid slug flow in horizontal tubes. British Chemical Engineering, 1964, Vol. 9, Nr. 9., S. 590–596.

    Google Scholar 

  65. Tien, C. L., Chen, S. L., und Peterson, P. F.: Condensation Inside Tubes. EPRI Report Nr. NP-5700, Research Project 1160–3, 1988.

    Google Scholar 

  66. Frössling, N.: Gerlands Beiträge zur Geophysik, 1938, Vol. 52, S. 170.

    Google Scholar 

  67. Higbie, R.: The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans. Amer. Inst. Chem. Engrs., 1935, Vol. 31, S. 365–388.

    Google Scholar 

  68. Hammerton, D., und Garner, F. IT: Gas Absorption from Single Bubbles. Trans. Instn. Chem. Engrs., 1954, Vol. 32, S. S18 - S24.

    Google Scholar 

  69. Johnson, A. I., Besik, F., und Hamielec, A. E. Mass Transfer from a Single Rising Bubble. Canadian J. Chemical Engineering, 1969, Vol. 47, S. 559–564.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Köhler, J. (1996). Eine kurze Literaturübersicht über Arbeiten zum Phasenübergang. In: Wärme- und Stoffübertragung in Zweiphasenströmungen. Grundlagen und Fortschritte der Ingenieurwissenschaften / Fundamentals and Advances in the Engineering Sciences. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-11811-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-11811-4_2

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-11812-1

  • Online ISBN: 978-3-663-11811-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics