Skip to main content

On the Double Layer Potential Operator over Polyhedral Domains: Solvability in Weighted Sobolev Spaces and Spline Approximation

  • Conference paper
Symposium “Analysis on Manifolds with Singularities”, Breitenbrunn 1990

Part of the book series: Teubner-Texte zur Mathematik ((TTZM,volume 131))

Abstract

Let Γ be the boundary of a simply connected bounded polyhedron Ω, in ℝ3. The harmonic double layer potential operator on Γ is defined by

$$ Ku(x): = \frac{1} {{2\pi }}\int_\Gamma {u\left( y \right)\frac{\partial } {{\partial n_y }}\frac{1} {{|x - y|}}do\left( y \right)} = \frac{1} {{2\pi }}\int_\Gamma {\frac{{(x - y).\,n_y }} {{|x - y|^3 }}u\left( y \right)do\left( y \right),\,x\, \in \,\Gamma } $$
(1)

where do is the surface measure on Γ and n the outward pointing normal vector to Γ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.S. Angell, R.E. Kleinman, J. Kral, Layer potentials on boundaries with corners and edges, Časopic Pro Pěst. Mathematiky 113 (1968) 387–402.

    MathSciNet  Google Scholar 

  2. K.E. Atkinson, Piecewise polynomial collocation for integral equations on surfaces in three dimensions, J. Integral Equations 9 (1985) (Suppl.) 25–48.

    MATH  Google Scholar 

  3. K.E. Atkinson, F. de Hoog, The numerical solution of Laplace’s equation on a wedge, IMA J. Numer. Anal. 4 (1984) 19–41.

    Article  MathSciNet  MATH  Google Scholar 

  4. G.A. Chandler, Galerkin’s method for boundary integral equations on polygonal domains, J. Austral. Math. Soc. B 26 (1984) 1–13.

    Article  MathSciNet  Google Scholar 

  5. G.A. Chandler, I.G. Graham, Product integration-collocation methods for non-compact integral operator equations, Math. Comp. 50 (1988) 125–138.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Costabel, E.P. Stephan, Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation, In: Banach Center Publications, Vol. 15, PWN, Warsaw 1985, pp. 175–251.

    Google Scholar 

  7. M. Costabel, E.P. Stephan, On the convergence of collocation methods for boundary integral equations on polygons, Math. Comp. 49 (1987) 461–478.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Elschner, On spline approximation for a class of non-compact integral equations, Math. Nachr. 146 (1990) 271–321.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Elschner, The double layer potential operator over polyhedral domains I: Solvability in weighted Sobolev spaces, Applicable Analysis (to appear), II: Spline Galerkin methods, Math. Meth. in the Appl. Sci. (to appear).

    Google Scholar 

  10. J. Kral, Integral operators in potential theory, Lecture Notes Math. 823, Springer, Berlin etc. 1980.

    Google Scholar 

  11. J. Kral, W. Wendland, Some examples concerning applicability of the Fredholm-Radon method in potential theory, Aplikace Matematiky 31 (1986) 293–308.

    MathSciNet  MATH  Google Scholar 

  12. J. Kral, W. Wendland, On the applicability of the Fredholm-Radon method in potential theory and the panel method, In: Notes on Numerical Fluid Mechanics, Vol. 21, Vieweg, 1988, pp. 120-136.

    Google Scholar 

  13. V.G. Maz’ya, Boundary integral equations of elasticity in domains with piecewise smooth boundaries, In: Equadiff 6 Proceedings, Brno University 1985, pp. 235-242.

    Google Scholar 

  14. V.G. Maz’ya, Boundary integral equations, In: Sovrem. Problemy Matem. Fundam. Napravlenia, Vol. 27, Viniti, Moscow 1988, pp. 131-228.

    Google Scholar 

  15. V.G. Maz’ya, B.A. Plamenevskij, Elliptic boundary value problems on manifolds with singularities, In: Problemy Mat. Anal., vyp. 6, Izdat. Leningrad Univ., Leningrad 1977, pp. 85–142.

    Google Scholar 

  16. T. von Petersdorff, Randwertprobleme der Elastizitätstheorie für Polyeder. Singularitäten und Approximationen mit Randelement met hoden, Dissertation, TH Darmstadt 1989.

    Google Scholar 

  17. A. Rathsfeld, The invertibility of the double layer potential operator in the space of continuous functions defined on a polyhedron. The panel method, Complex Variables (to appear).

    Google Scholar 

  18. S. Rempel, Corner singularity for transmission problems in three dimensions, Integral Equations Operator Th. 12 (1989) 835–854.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Schmitz, Ober das singulare Verhalten der Lösungen von Integralgleichungen auf Flächen mit Ecken, Dissertation, Univ. Stuttgart 1989.

    Google Scholar 

  20. W. Wendland, Die Behandlung von Randwertaufgaben im ℝ3 mit Hilfe von Einfach-und Doppelschichtpotentialen, Numer. Math. 11 (1968) 380–404.

    Article  MathSciNet  MATH  Google Scholar 

  21. G.C. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains, J. Funct. Anal. 59 (1984) 572–611.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Fachmedien Wiesbaden

About this paper

Cite this paper

Elschner, J. (1992). On the Double Layer Potential Operator over Polyhedral Domains: Solvability in Weighted Sobolev Spaces and Spline Approximation. In: Schulze, BW., Triebel, H. (eds) Symposium “Analysis on Manifolds with Singularities”, Breitenbrunn 1990. Teubner-Texte zur Mathematik, vol 131. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-11577-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-11577-9_6

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-11578-6

  • Online ISBN: 978-3-663-11577-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics