Skip to main content

Experimental Gravity

  • Chapter
Relativistic Astrophysics

Abstract

The present status of experimental gravity is reviewed. We discuss experimental tests of Newton’s law of gravity (the 1/r2-law, Ġ/G and the numerical value of G), of various forms of the equivalence principle (the weak equivalence principle, Einstein’s equivalence principle and the strong equivalence principle related with the Nordtvedt effect) as well as various tests of metric theories of gravity. Among the latter we describe the search for gravito-magnetism (Lense-Thirring effects), measurements of the geodetic precession and light-deflection (signal retardation) effects. The important topics of binary pulsars and gravitational wave physics are beyond the scope of that article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelberger, E.G., Heckel, B.R., Stubbs, C.W., and Rogers, W.F. (1991): Searches for New Macroscopic Forces. Ann. Rev. Nucl. Particle Sci., 41, 269

    Article  Google Scholar 

  • Adelberger, E.G., Heckel, B.R., Smith, G., Su, Y., and Swanson, H.E. (1990): Eötvös experiments, lunar ranging and the strong equivalence principle. Nature, 347, 261

    Article  Google Scholar 

  • Alley, C.O. (1979): Relativity and clocks. In: Proc. of the 33rd Annual Symposium on Frequency Control. Electronic Industries Association, Washington, D.C.

    Google Scholar 

  • Ander, M.E., Zumberge, M.A., Lautzenhiser, T., Parker, R.L., Aiken, C.L.V., Gorman, M.R., Nieto, M.M., Cooper, A.P.R., Ferguson, J.F., Fisher, E., McMechan, G.A., Sasagawa, G., Stevenson, J.M., Backus, G., Chave, A.D., Greer, J., Hammer, P., Hansen, B.L., Hildebrand, J.A., Kelty, J.R., Sidles, C., and Wirtz, J. (1989): Test of Newton’s Inverse-Square Law in the Greenland Ice Cap. Phys. Rev. Lett., 62, 985

    Article  Google Scholar 

  • Anderson, J.D., Keesey, M.S., Lau, E.L., Standish, E.M., and Newhall, X.X. (1978): Tests of General Relativity using astrometric and radiometric observations of the planets. Acta Astronautica, 5, 43

    Article  Google Scholar 

  • Bagley, C.H. and Luther, G.G. (1997): Preliminary Results of a Determination of the Newtonian Constant of Gravitation: A Test of the Kuroda Hypothesis. Phys. Rev. Lett., 78, 3047

    Article  Google Scholar 

  • Bardas, D., Taber, M.A., Buchman, S., DeBra, D.B., Everitt, C.W.F., Gill, D., Green, G., Gutt, G., Kasdin, N.J., Keiser, G.M., Lipa, J.A., Lockhart, J.M., Muhlfelder, B., Parkinson, B.W., Turneaure, J.P., Van Patten, R.A., Xiao, Y., Zhou, P., Parmley, R., Reynolds, G., Calhoon, S., Clappier, R., Frank, D., Grady, J., Grammer, J., Read, D., Salmon, J., and Vassar, R. (1992): Gravity Probe B: II. Hardware Development; Progress Towards the Flight Instrument. In: Proc. of the Sixth Marcel Grossmann Meeting (eds. H. Sato and T. Nakamura ). World Scientific, Singapore, p. 382

    Google Scholar 

  • Bartlett, D.F. and Tew, W.L. (1989): Possible Effect of the Local Terrain on the North Carolina Tower Gravity Experiment. Phys. Rev. Lett., 63, 1531

    Article  Google Scholar 

  • Boynton, P.E., Crosby, D., Ekstrom, P., and Szumilo, A. (1987): Search for an Intermediate-Range Composition-Dependent Force. Phys. Rev. Lett., 59, 1385

    Article  Google Scholar 

  • Braginsky, V.B. and Panov, V.I. (1972): Verification of the Equivalence of Inertial and Gravitational Mass. Soy. Phys. JETP, 34, 463

    Google Scholar 

  • Ciufolini, I. (1989): A Comprehensive Introduction to the LAGEOS Gravitometric Experiment: From the Importance of the Gravitomagnetic Field in Physics to Preliminary Error Analysis and Error Budget. Int. J. Mod. Phys. A., 4, 3083

    Article  Google Scholar 

  • Ciufolini, I. (1991): New Class of Theories of Gravity Not Described by the Parametrized Post-Newtonian (PPN) Formalism. Int. J. Mod. Phys. A., 8, 5511

    Article  MathSciNet  Google Scholar 

  • Clagett, M. (1955): Greek Science in Antiquity. Abelard Schumann, New York.

    MATH  Google Scholar 

  • Cornaz, A., Hubler, B., and Kündig, W. (1994): Determination of the Gravitational Constant at an Effective Interaction Distance of 112 m. Phys. Rev. Lett., 72, 1152

    Article  Google Scholar 

  • Damour, T., Gibbons, G.W., and Taylor, J.H. (1988): Limits on the Variability of G Using Binary-Pulsar Data. Phys. Rev. Lett, 61, 1151

    Article  Google Scholar 

  • Demidov, N.A., Ezhov, E.M., Sakharov, B.A., Uljanov, B.A., Bauch, A., and Fischer, B. (1992): Investigations of the frequency instability of CH1–75 hydrogen masers. Proceedings of the 6th European Frequency and Time Forum. Noordwijk, NL, ESA

    Google Scholar 

  • Dickey, J.O, Bender, P.L., Faller, J.E., Newhall, X.X., Ricklefs, R.L., Ries, J.G., Shelus, P.J., Veillet, C., Whipple, A.L., Wiant, J.R., Williams, J.G., and Yoder, C.F. (1994). Lunar Laser Ranging: A Continuing Legacy of the Apollo Program. Science, 265, 482

    Article  Google Scholar 

  • Dreyer, R. (1961): A Search for Anisotropy of Inertial Mass using a Free Precession Technique. Phil. Mag., 6, 683

    Article  Google Scholar 

  • Dyson, F., Eddington, A.S., and Davidson, C. (1920): A determination of the deflection of light by the Sun’s gravitational field from observations made at the total eclipse of May 29, 1919. Phil. Trans. Roy. Soc., 220A, 291

    Article  Google Scholar 

  • Eckhardt, D.H., Jekeli, C., Lazarewicz, A.R., Romaides, A.J., and Sands, R.W. (1988): Tower Gravity Experiment: Evidence for Non-Newtonian Gravity. Phys. Rev. Lett., 60, 2567

    Article  Google Scholar 

  • Eötvös, R.V., Pekar, D., and Fekete, E. (1922): Beiträge zum Gesetze der Proportionalität von Trägheit and Gravität. Ann. Phys., 68, 11

    Article  Google Scholar 

  • Eubanks, T.M., Matsakis, D.N., Martin, J.O., Archinal, B.A., McCarthy, D.D., Klioner, S.A., Shapiro, S., and Shapiro, I.I. (1997): Advances in Solar System Tests of Gravity. Abstract submitted for the APR97 Meeting of The American Physical Society, Session K11: Gravitation Experiment and Theory. i p.

    Google Scholar 

  • Everitt, C.W.F. (1974): In: Experimental Gravitation: Proc. of Course 56 of the International School of Physics “Enrico Fermi” (ed. B. Bertotti). Academic Press, New York.

    Google Scholar 

  • Fischbach, E., Sudarsky, D., Szafer, A., Talmadge, C., and Aronson, S.H. (1986): Reanalysis of the Eötvös Experiment. Phys. Rev. Lett., 56, 3

    Article  Google Scholar 

  • Fischbach, E., Sudarsky, D., Szafer, A., Talmadge, C., and Aronson, S.H. (1988): Long-Range Forces and the Eötvös Experiment. Ann. Phys. (N.Y.), 182, 1

    Article  Google Scholar 

  • Fitzgerald, M. and Armstrong, T. (1995): Newton’s Gravitational Constant with Uncertainty Less Than 100 pm. IEEE Trans. Instrum. Meas., 44, 494

    Article  Google Scholar 

  • Godone, A., Novero, C., and Tavella, P. (1995): Null gravitational redshift experiment with nonidentical atomic clocks. Phys. Rev. D, 51, 319

    Google Scholar 

  • Gundlach, J.H., Adelberger, E.G., Heckel, B.R., and Swanson, H.E. (1996): New technique for measuring Newton’s constant G. Phys. Rev. D, 54, R1256

    Google Scholar 

  • Hafele, J.C. and Keating, R.E. (1972): Around-the-World Atomic Clocks: Predicted Relativistic Time Gains. Science, 177, 166

    Article  Google Scholar 

  • Hafele, J.C. and Keating, R.E. (1972): Around-the-World Atomic Clocks: Observed Relativistic Time Gains. Science, 177, 168

    Article  Google Scholar 

  • Haugan, M.P. and Kauffmann, T.F. (1995): New test of the Einstein equivalence principle and the isotropy of space. Phys. Rev. D, 52, 3168

    Google Scholar 

  • Heckel, B.R., Adelberger, E.G., Stubbs, C.W., Su, Y., Swanson, H.E., Smith, G., and Rogers, W.F. (1989): Experimental Bounds on Interactions Mediated by Ultralow-Mass Bosons. Phys. Rev. Lett., 63, 2705

    Article  Google Scholar 

  • Hubler, B., Cornaz, A., and Kündig, W. (1995): Determination of the gravitational constant with a lake experiment: New constraints for non-Newtonian gravity. Phys. Rev. D, 51, 4005

    Article  Google Scholar 

  • Hughes, V.W., Robinson, H.G., and Beltran-Lopez, V. (1960): Upper limit for the anisotropy of inertial mass from nuclear resonance experiments. Phys. Rev. Lett., 4, 342

    Article  Google Scholar 

  • Kuroda, K. (1995): Does the Time-of-Swing Method Give a Correct Value of the Newtonian Gravitational Constant? Phys. Rev. Lett., 75, 2796

    Article  Google Scholar 

  • Lebach, D.E., Corey, B.E., Shapiro, I.I., Ratner, M.I., Webber, J.C., Rogers, A.E., Davis, J.L., and Herring, T.A. (1995): Measurement of the Solar Gravitational Deflection of Radio Waves Using Very-Long-Baseline Interferometry. Phys. Rev. Lett., 75, 1439

    Article  Google Scholar 

  • Lipa, J.A. and Everitt, C.W.F. (1978): The role of cryogenics in the gyroscope experiment. Acta Astronautica, 5, 119

    Article  Google Scholar 

  • Luther, G.G. and Towler, W.R. (1982): Redetermination of the Newtonian Gravitational Constant G. Phys. Rev. Lett., 48, 121

    Article  Google Scholar 

  • Michaelis, W., Haars, H., and Augustin, R. (1995): A new precise determination of Newton’s gravitational constant. Metrologia, 32, 267

    Article  Google Scholar 

  • Misner, C., Thorne, K.S., and Wheeler, J.A. (1973): Gravitation. Freeman, San Francisco

    Google Scholar 

  • Moffat, J.W. (1991): In: Gravitation 1990, Proceedings of the Banff Summer Institute, Banff, Canada (eds. R. Mann and P. Wesson). World Scientific, Singapore

    Google Scholar 

  • Müller, J., Schneider, M., Soffel, M., and Ruder, H. (1991): Testing Einstein’s theory of gravity by analyzing lunar ranging data. Astrophys. J. Lett., 382, L101

    Article  Google Scholar 

  • Nordtvedt, K. (1968a): Equivalence Principle for Massive Bodies. I. Phenomenology. Phys. Rev., 169, 1014

    Article  Google Scholar 

  • Nordtvedt, K. (1968b): Equivalence Principle for Massive Bodies. II. Theory. Phys. Rev., 169, 1017

    Article  Google Scholar 

  • Nordtvedt, K. (1973): Post-Newtonian Gravitational Effects in Lunar Laser Ranging. Phys. Rev. D, 7, 234

    Google Scholar 

  • Nordtvedt, K. (1988): Gravitomagnetic Interaction and Laser Ranging to Earth Satellites. Phys. Rev. Lett., 61, 2647

    Article  Google Scholar 

  • Nordtvedt, K. and Will, C.M. (1972): Conservation laws and preferred frames in relativistic gravity. II. Experimental evidence to rule out preferred-frame theories of gravity. Astrophys. J., 177, 775

    Article  MathSciNet  Google Scholar 

  • Parker, R.L. and Zumberge, M.A. (1989): An analysis of geophysical experiments to test Newton’s law of gravity. Nature, 342, 29

    Article  Google Scholar 

  • Pound, R.V. and Rebka, G.A., Jr. (1960): Apparent Weight of Photons. Phys. Rev. Lett., 4, 337

    Article  Google Scholar 

  • Pound, R.V. and Snider, J.L. (1965): Effect of Gravity on Gamma Radiation. Phys. Rev., 140, B788

    Article  Google Scholar 

  • Pugh, G.E. (1959): WSEG Research Memo, 11. U.S. Dept. of Defence

    Google Scholar 

  • Reasenberg, R.D. and Shapiro, I.I. (1976): In: Atomic Masses and Fundamental Constants, Vol. 5 (eds. J.H. Sanders and A.H. Wapstra). Plenum, New York

    Google Scholar 

  • Reasenberg, R.D. and Shapiro, I.I. (1978): In: On the Measurement of Cosmological Variations of the Gravitational Constant (ed. L. Halpern). University Press of Florida, Gainesville

    Google Scholar 

  • Williams, J.G., Newhall, X.X., and Dickey, J.O. (1996): Relativity parameters determined from lunar laser ranging. Phys. Rev. D, 53, 6730

    Google Scholar 

  • Reasenberg, R.D., Shapiro, I.I., MacNeil, P.E., Goldstein, R.B., Breidenthal, J.C., Brenkle, J.P., Cain, D.L., Kaufmann, T.M., Komarek, T.A, and Zygielbaum, A.I. (1979): Viking relativity experiment: verification of signal retardation by solar gravity. Astrophys. J., 234, L219

    Article  Google Scholar 

  • Robertson, D.S., Carter, W.E., and Dillinger, W.H. (1991): New measurement of solar gravitational deflection of radio signals using VLBI. Nature, 349, 768

    Article  Google Scholar 

  • Roll, P.G., Krotkov, R., and Dicke, R.H. (1964): The Equivalence of Inertial and Passive Gravitational mass. Ann. Phys. (N. Y.), 26, 442

    Article  MathSciNet  MATH  Google Scholar 

  • Romaides, A.J., Sands, R.W., Fischbach, E., and Talmadge, C.L. (1997): Final results from the WABG tower gravity experiment. Phys. Rev. D, 55, 4532

    Google Scholar 

  • Schiff, L.I. (1960): Possible new experimental test of general relativity theory. Phys. Rev. Lett., 4, 215

    Article  Google Scholar 

  • Schneider, M., Müller, J., Schreiber, U., and Egger, D. (1997): Hochpräzisionsvermessung der Mondbewegung. Astronomie and Raumfahrt, 34, 4

    Google Scholar 

  • Shapiro, I.I., Smith, W.B., Ash, M.B., Ingalls, R.P., and Pettengill, G.H. (1971): Gravitational Constant: Experimental Bound on Its Time Variation. Phys. Rev. Lett., 26, 27

    Article  Google Scholar 

  • Shapiro, I.I. Reasenberg, R.D., Chandler, J.F., and Babcock, R.W. (1988): Measurement of the de Sitter Precession of the Moon: A Relativistic Three-Body-Effect. Phys. Rev. Lett.,61 2643

    Google Scholar 

  • Stacey, F.D., Tuck, G.J., Moore, G.I., Holding, S.C., Goodwin, B.D., and Zhou, R. (1987): Geophysics and the law of gravity. Rev. Mod. Phys., 59, 157

    Article  Google Scholar 

  • STEP, Satellite Test of the Equivalence Principle (1996): Testing the Equivalence Principle in Space. Proc. of an International Symposium held in Pisa, Italy, 6–8 April 1993 (ed. R. Reinhard). ESA Publications Division, WPP-115

    Google Scholar 

  • Thieberger, P. (1987): Search for a Substance-Dependent Force with a New Differential Accelerometer. Phys. Rev. Lett., 58, 1066

    Article  Google Scholar 

  • Turneaure, J.P., Will, C.M., Farrell, B.F., Mattison, E.M., and Vessot, R.F.C. (1983): Test of the principle of equivalence by a null gravitational red-shift experiment. Phys. Rev. D, 27, 1705

    Google Scholar 

  • Vessot, R.F.C. (1984): Tests of gravitation and relativity. Contemp. Phys., 25, 355

    Article  Google Scholar 

  • Vessot, R.F. and Levine, M.W. (1979): A Test of the Equivalence Principle Using a Space-Borne Clock. Gen. Rel. and Gray., 10, 181

    Article  Google Scholar 

  • Vessot, R.F.C., Levine, M.W., Mattison, E.M., Blomberg, E.L., Hoffman, T.E., Nystrom, G.U., Farrel, B.F., Decher, R., Eby, P.B., Baugher, C.R., Watts, J.W., Teuber, D.L., and Wills, F.D. (1980): Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser. Phys. Rev. Lett., 45, 2081

    Article  Google Scholar 

  • Walesch, H., Meyer, H., Piehl, H., and Schurr, J. (1995): The Gravitational Force at Mass Separations from 0.6 m to 2.1 m and the Precise Measurement of G. IEEE Trans. Instrum. Meas., 44, 491

    Article  Google Scholar 

  • Will, C.M. (1973): Relativistic gravity in the solar system. III. Experimental disproof of a class of linear theories of gravitation. Astrophys. J., 185, 31

    Article  MathSciNet  Google Scholar 

  • Will, C.M. (1993): Theory and experiment in gravitational physics (2nd revised edition). Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Will, C.M. and Nordtvedt, K. (1972): Conservation laws and preferred frames in relativistic gravity. I. Preferred-frame theories and an extended PPN formalism. Astrophys. J., 177, 757

    Article  MathSciNet  Google Scholar 

  • Williams, J.G., Sinclair, W.S., and Yoder, C.F. (1978): Tidal acceleration of the Moon. Geophys. Res. Lett., 5, 943

    Google Scholar 

  • Xiao, Y.M., Bardas, D., Buchman, S., Cohen, C., Everitt, C.W.F., Gill, D., Keiser, G.M., Van Patten, R.A., Taber, M., Turneaure, J.P., Van Hooydonk, T., Walter, T., and Zhou, P. (1992): Gravity Probe B: III. The Precision Gyroscope. In: Proc. of the Sixth M. Grossmann Meeting on General Relativity (eds. H. Sato and T. Nakamura ). World Scientific, Singapore, p. 394

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Harald Riffert Hanns Ruder Hans-Peter Nollert Friedrich W. Hehl

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Soffel, M. (1998). Experimental Gravity. In: Riffert, H., Ruder, H., Nollert, HP., Hehl, F.W. (eds) Relativistic Astrophysics. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-11294-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-11294-5_16

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-11296-9

  • Online ISBN: 978-3-663-11294-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics