Skip to main content

General Relativity as a Tool for Astrophysics

  • Chapter
Relativistic Astrophysics

Abstract

Phenomenologically the gravitational interaction may be characterized as the only (known) interaction which is both universal and long range. It affects all kinds of matter in the same way, and under quasistationary conditions its force falls off, like the Coulomb force, as r −2. In contrast to electrodynamics, it is then always attractive and thus cannot be shielded. Like electromagnetism it admits waves propagating with the fundamental speed c, but in contrast to electromagnetic waves which have helicity ±1, gravitational waves have helicity ±2. Moreover, gravity is by far the weakest interaction (at accessible energies) as highlighted by the “fact” that between a proton and an electron Newton’s force is weaker than Coulomb’s by a factor of 2 · 1039. Because of these well-known properties, gravity — although unmeasurably weak and totally negligible compared to the strong and weak, short range nuclear forces in the atomic and subatomic regime — dominates in the realm of celestial bodies and systems thereof. This clear-cut separation of interaction ranges also insures that one can combine in astrophysics laws of GR with laws from quantum mechanics (equations of state, transition probabilities) without difficulties, although these laws are taken from theories which are, strictly speaking, incompatible. The combination of the two properties “universality” and “long range”, motivates the interpretation of gravity as a manifestation of the metric g αβ and its associated affine connection Γ α βγ and curvature R α βγδ of spacetime. According to Einstein, the field g αβ serves both as the metric, which locally defines the distinction between space and time and determines proper (clock) times and proper (ruler) distances, angles, areas and volumes, and as the gravitational potential whose derivatives, through the connection govern the equations of motion of matter and non-gravitational fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Einstein, A. (1916): Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsber. Preuß. Akad. Wiss., 1, 688

    Google Scholar 

  • Einstein, A. (1918): Über Gravitationswellen. Sitzungsber. Preuß. Akad. Wiss., 1, 154

    Google Scholar 

  • Friedrich, H. (1985): On the Hyperbolicity of Einstein’s and other Gauge Field Equations. Commun. Math. Phys., 100, 525

    Article  MathSciNet  MATH  Google Scholar 

  • Friedrich, H. (1997): Einstein’s Equation and Conformal Structures (eds. S. Huggett et al.).

    Google Scholar 

  • Preprint AE I-019 (Oct. 1996), to appear in Geometric Issues in the Foundations of Science. Oxford University Press, Oxford

    Google Scholar 

  • Hulse, R.A. (1994): The discovery of the binary pulsar. Rev. Mod. Phys., 66, 699

    Article  Google Scholar 

  • Lovelock, D. (1972): The Form-Dimensionality of Space and the Einstein Tensor. J. Math. Phys., 13, 874

    Article  MathSciNet  MATH  Google Scholar 

  • Poincaré, H. (1905): Sur la dynamique de l’électron. C. R. Acad. Sci. Paris, 140, 1504

    MATH  Google Scholar 

  • Poincaré, H. (1908): La dynamique de l’électron. Revue générale des Sciences pures et appliqués, 19, 386

    Google Scholar 

  • Taylor, J.H. (1994): Binary pulsars and relativistic gravity. Rev. Mod. Phys., 66, 711

    Article  Google Scholar 

  • Vermeil, H. (1917): Notiz über das mittlere Krümmungsmaß einer n-fach ausgedehnten Riemannschen Mannigfaltigkeit. Nachrichten v. d. Königl. Ges. d. Wiss. zu Göttingen, Math.Phys. Klasse, 334–344

    Google Scholar 

  • Walsh, D., Carswell, R.F., and Weymann, R.J. (1979): 0957+561 A, B: twin quasistellar objects or gravitational lens? Nature, 279, 381

    Google Scholar 

  • Weyl, H. (1991): Raum, Zeit, Materie. 8. edition. Springer, Berlin, Anhang I

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Harald Riffert Hanns Ruder Hans-Peter Nollert Friedrich W. Hehl

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Ehlers, J. (1998). General Relativity as a Tool for Astrophysics. In: Riffert, H., Ruder, H., Nollert, HP., Hehl, F.W. (eds) Relativistic Astrophysics. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-11294-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-11294-5_1

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-11296-9

  • Online ISBN: 978-3-663-11294-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics