Problems of Elastomechanics

  • Horst Leipholz

Abstract

As outlined in Section 1.1, we will now discuss stability problems in elastomechanics in connection with the fundamental concepts contained in the stability theory discussed previously. There exists a well-developed and independent theory for elastomechanics, which can be found in the literature. In addition to Refs. (1) and (2), the reader is also referred to several important works (8), which by no means exhaust the list. It is not necessary to repeat the methods and examples of these works. Instead we will critically question their contents. Modern studies on the stability of elastic bodies indeed frequently question the validity and applicability of the old concepts and methods, and the theory of elastic-body stability has, therefore, often been reformulated and classified within the overall mechanical theory of stability.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Malkin, J. G., Stability Theory of Motion, Oldenbourg, Munich, 1959.MATHGoogle Scholar
  2. [2]
    Hahn, W., Stability of Motion, Springer, New York, 1967.MATHGoogle Scholar
  3. [3]
    LaSalle, J., and Lefschetz, S., Stability by Lyapunov’s Direct Method with Applications, Academic Press, New York, 1961.Google Scholar
  4. [4]
    Lefschetz, S., Stability of Nonlinear Control Systems, Academic Press, New York, 1965.MATHGoogle Scholar
  5. [5]
    Burgermeister, G., Steup, H., and Kretzschmar, H., Stability Theory, Vols. I, II, Deutscher Verlag der Wissenshaften, Berlin, 1957, 1963.Google Scholar
  6. [6]
    Timoshenko, ST. P., and Gere, J. M., Theory of Elastic Stability, McGraw-Hill, New York, 1961.Google Scholar
  7. [7]
    Bolotin, V. V., The Dynamic Stability of Elastic Systems, Holden-Day, Inc., San Francisco, London, Amsterdam, 1964.Google Scholar
  8. [8]
    Bolotin, V. V., Nonconservative Problems of the Theory of Elastic Stability, Pergamon Press, Oxford, 1963.MATHGoogle Scholar
  9. [9]
    Kollbruner, C. F., and Meister, M., Buckling, Springer, Berlin, 1955.Google Scholar
  10. [10]
    Letov, A. M., Stability in Nonlinear Control Systems, Princeton University Press, Princeton, New Jersey, 1961.Google Scholar
  11. [1]
    Minorsky, N., Nonlinear Oscillations, Van Nostrand, Princeton, New Jersey, 1962.Google Scholar
  12. [2]
    Whittaker, E. T., Analytic Dynamics of Particles and Rigid Bodies, Cambridge University Press, London and New York, 1959.Google Scholar
  13. [3]
    Klein, F., and Sommerfeld, A., The Theory of the Gyroscope, Johnson Reprint Corp. (Teubner), New York, Stuttgart 1965.Google Scholar
  14. [4]
    Klotter, K., Technical Vibration Theory, Vol. 2. Springer, Berlin, 1960.Google Scholar
  15. [5]
    Solodovnikov, V. V., Foundations of Autonomous Control, Oldenbourg, Munich, 1959.Google Scholar
  16. [6]
    Wang, C. -T., Applied Elasticity, McGraw-Hill, New York, 1953.MATHGoogle Scholar
  17. [7]
    Budó, A., Theoretical Mechanics, Springer, Berlin, 1963.Google Scholar
  18. [8]
    Szabó, I., Advanced Technical Mechanics, Springer, Berlin, 1960, and Goldstein, H., Classical Mechanics 2nd edn., Addison-Wesley, Reading, Mass., Menlo Park, Ca., London, Amsterdam, Don Mills, Ontario, Sydner, 1981.Google Scholar
  19. [9]
    Cunningham, W. J., Introduction to Nonlinear Analysis, McGraw-Hill, New York, 1958.MATHGoogle Scholar
  20. [10]
    Kauderer, H., Non-Linear Mechanics, Springer, Berlin, 1958.Google Scholar
  21. [11]
    Oppelt, W., Small Handbook of Technical Control Processes, Verlag Chemie, Weinheim, 1964.Google Scholar
  22. [12]
    Popov, E. P., Dynamics of Automatic Control Systems, Pergamon Press, Oxford, 1958.Google Scholar
  23. [13]
    Popov, E. P., and Paltov, J. P., Approximate Methods for the Investigation of Non-Linear Control Systems, Akademische Verlag Gesellschaft, Leipzig, 1963.Google Scholar
  24. [14]
    Magnus, K., Vibrations., Teubner, Stuttgart, 1961.Google Scholar
  25. (3).
    Zurmühl, R., Applied Mathematics,p. 782. Springer, Berlin, 1953Google Scholar
  26. Gantmacher, F. R., The Theory of Matrices, Vol. 2, Chelsea Publishing Company, New York, 1960.Google Scholar
  27. (4).
    Kamke, E., Differential Equations of Real Functions, pp. 120–193, Akademische Verlag Gesellschaft Geest and Portig, K. -G., Leipzig, 1952.Google Scholar
  28. (5).
    Duschek, A., Advanced Mathematics, Vol. IV, p. 217, Springer, Vienna, 1961.Google Scholar
  29. (6).
    Lanczos, C., The Variational Principles of Mechanics, University of Toronto Press, Toronto, 1964.Google Scholar
  30. (7).
    Frank, P., and Von Mises, R., Differential and Integral Equations of Mechanics and Physics, Vol. II, pp. 44–190, Vieweg, Braunschweig, New York, 1961.Google Scholar
  31. [1]
    Pflüger, A., Stability Problems of Elastostatics, Springer, Berlin, 1964.Google Scholar
  32. [2]
    Bürgermeister, G., Steup, H. and Kretzschmar, H., Stability Theory, Vols. I, II Deutscher Verlag der Wissenschaften, Berlin, 1957, 1963.MATHGoogle Scholar
  33. [3]
    Gerard, G., Introduction to Structural Stability Theory, McGraw-Hill, New York, 1962.Google Scholar
  34. [4]
    Marguerre, K., Modern Problems for Engineers, pp. 189–249, Springer, Berlin, 1950.Google Scholar
  35. [5]
    Langhaar, H. L., Energy Methods in Applied Mechanics, pp. 201–232, Wiley, New York, London, 1962.Google Scholar
  36. (9).
    Tricorni, R., Elliptical Functions, pp. 263–271, Akademische Verlag Gesellschaft Geest und Portig, K. -G., Leipzig, 1948.Google Scholar
  37. (10).
    Wang, C. -T., Applied Elasticity, pp. 217–222, McGraw-Hill, New York, 1953.Google Scholar
  38. (11).
    Koiter, W. T., Elastic stability and post-buckling behaviour, in Nonlinear Problems ( R. E. Langer, ed.), pp. 257–275, University of Wisconsin Press, Madison, Wisconsin, 1963.Google Scholar
  39. (12).
    Michlin, S. G., Variational Methods of Mathematical Physics, pp. 365–489, Akademie Verlag, Berlin, 1962.Google Scholar
  40. (13).
    Bisplinghoff, R. L., and Ashley, H., Principles of Aeroelasticity, pp. 418–424, Wiley, New York, 1962.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1987

Authors and Affiliations

  • Horst Leipholz
    • 1
  1. 1.University of WaterlooWaterlooCanada

Personalised recommendations