Skip to main content

Oblique Splitting Subspaces and Stochastic Realization with Inputs

  • Chapter

Part of the book series: European Consortium for Mathematics in Industry ((XECMI))

Abstract

Until recently stochastic realization theory has been primarily addressed to modeling of random processes in the absence of exogenous signals (inputs). However stochastic realization of models with exogenous inputs is also of interest. In particular it is of interest for the new class of “ subspace ” type identification algorithms. These algorithms can be formulated as stochastic realization algorithms in an appropriate data Hilbert space [23, 24] (as it is well-known subspace methods have important advantages over the traditional parametric optimization approach to identification). We discuss here procedures for constructing minimal state-space models in presence of inputs, based on a generalization of the idea of Markovian splitting subspace which is central in stochastic realization theory for random processes. In particular we discuss a geometric procedure for constructing the minimal state-space (the predictor space) of a process with inputs which leads to an interesting identification algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Akaike, Markovian representation of stochastic processes by canonical variables, SIAM J. Control, 13, pp. 162–173, (1975).

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Akaike, Stochastic Theory of Minimal Realization. IEEE Trans. Automat. Contr., vol. AC-19, no. 6, pp. 667–674, 1974.

    Article  MathSciNet  Google Scholar 

  3. H. Akaike, Canonical Correlation Analysis of Time Series and the Use of an Information Criterion. System Identification: Advances and Case Studies (R. Mehra and D. Lainiotis, Eds. ), Academic, 1976, pp. 27–96.

    Google Scholar 

  4. P.A. Fuhrmann, Linear Operators and Systems in Hilbert Space, McGraw Hill 1981.

    Google Scholar 

  5. C.W.J. Granger, Economic processes involving feedback, Information and Control 6, (1963), pp. 28–48.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Helson, Lectures on Invariant Subspaces, Academic Press, N.Y. 1961.

    Google Scholar 

  7. W. E. Larimore, System identification, reduced-order filtering and modeling via canonical variate analysis, Proc. American Control Conference, 1983, pp. 445–451.

    Google Scholar 

  8. P.D.Lax and R.S.Phillips, Scattering Theory, Academic Press, New York, 1967.

    Google Scholar 

  9. A. Lindquist, G. Picci and G. Ruckebusch On minimal splitting subspaces and Markovian representation, Math. System Theory, 12: 271–279, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Lindquist and G. Picci, On the stochastic realization problem SIAM J. Control and Optimization, 17: 365–389, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Lindquist and G. Picci, Realization theory for multivariate stationary Gaussian processes, SIAM J. Contr. and Optimiz. 23 (1985), pp. 809–857.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Lindquist and M. Pavon, On the structure of state space models of discrete-time vector processes, IEEE Tr. on Automatic Control, AC-29, p. 418–432, 1984.

    Google Scholar 

  13. A. Lindquist and G. Picci, A geometric approach to modelling and estimation of linear stochastic systems, Journal of Mathematical Systems, Estimation and Control, 1: 241–333, 1991.

    MathSciNet  Google Scholar 

  14. A. Lindquist and G. Picci, On “subspace-methods” identification and stochastic model reduction, Proc. 10th IFAC Symposium on System Identification, Copenhagen, DK, 2 (1994), pp. 397–403.

    Google Scholar 

  15. A. Lindquist and G. Picci, Canonical correlation analysis approximate covariance extension and identification of stationary time series, Automatica, vol. 32, pp. 709–733, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Lindquist, G. Michaletzky and G. Picci, Zeros of Spectral Factors, the Geometry of Splitting Subspaces, and the Algebraic Riccati Inequality, SIAM J. Control 8_4 Optimization, 33,p. 365–401, (1995).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Lindquist and G. Picci, Geometric Methods for State Space Identification, in Identification, Adaptation, Learning, (Lectures given at the NATO-ASI School, From Identifiation to Learning held in Como, Italy, Aug.1994), Springer Verlag, 1996.

    Google Scholar 

  18. M. Moonen, B. De Moor, L. Vanderberghe and J. Vandewalle, On-and Off-Line Identification of Linear State-Space Models. Int. J. Control 49 (1989), pp. 219–232.

    MATH  Google Scholar 

  19. M. Moonen and J. Vandewalle, QSVD Approach to On-and Off-Line State-Space Identification. Int. J. Control 51 (1990), pp. 1133–1146.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Picci, Stochastic realization of Gaussian processes Proc. of the IEEE, 64 (1976), pp. 112–122.

    Article  MathSciNet  Google Scholar 

  21. G. Picci and T. Katayama, Stochastic realization with exogenous inputs and “Subspace Methods” Identification, Signal Processing,1996, (in press).

    Google Scholar 

  22. G. Picci and T. Katayama: “A simple ”subspace“ identification algorithm with exogenous inputs”, Proceedings of the 1996 triennial IFAC Congress,San Francisco, Ca., paper n. 0916, session 3a-06–5.

    Google Scholar 

  23. G. Picci, Geometric Methods in Stochastic Realization and System Identification CWI Quarterly special Issue on System Theory, 9, pp. 205–240, 1996.

    MathSciNet  MATH  Google Scholar 

  24. G. Picci, Stochastic Realization and System Identification, in Statistical Methods in Control and Signal Processing, T. Katayama and I. Sugimoto eds, M. Dekker, N.Y. 1997.

    Google Scholar 

  25. N. I. Rozanov, Stationary Random Processes. Holden-Day (1963).

    Google Scholar 

  26. G. Ruckebusch, Répresentations markoviennes de processus gaussiens stationnaires, C.R.Acad.Sc.Paris, Series A, 282, p. 649–651, 1976.

    MATH  Google Scholar 

  27. G. Ruckebusch, A state space approach to the stochastic realization problem, Proc. 1978 IEEE Intern. Symp. Circuits and Systems, p. 972–977, 1978.

    Google Scholar 

  28. P. Van Overschee and B. De Moor, Subspace algorithms for the stochastic identification problem, Automatica 29 (1993), pp. 649–660.

    Article  MATH  Google Scholar 

  29. P. Van Overschee and B. De Moor, N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems, Automatica 30 (1994), pp. 75–93.

    Article  MATH  Google Scholar 

  30. P. Van Overschee and B. De Moor, A unifying theorem for subspace system identification algorithms and its interpretation. Proc. 10th IFAC Symposium on System Identification 2 (1994), pp. 145–156.

    Google Scholar 

  31. M. Verhaegen, Identification of the deterministic part of MIMO State Space Models given in Innovations form from Input-Output data, Automatica 30 (1994), pp. 61–74.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Paul Fuhrmann in occasion of his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Picci, G. (1997). Oblique Splitting Subspaces and Stochastic Realization with Inputs. In: Helmke, U., Prätzel-Wolters, D., Zerz, E. (eds) Operators, Systems and Linear Algebra. European Consortium for Mathematics in Industry. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-09823-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-09823-2_13

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-09824-9

  • Online ISBN: 978-3-663-09823-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics