Skip to main content

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM,volume 48))

  • 168 Accesses

Abstract

Viscosity effects are present in every flow. If, however, the momentum forces acting in the flow are much larger than the viscous forces (large Reynolds number), the latter can be neglected. Flow with such properties — inviscid flows — can be described with the Euler equations, or even with the potential equation. The latter holds if the flow in addition is irrotational, and if compressibility effects are weak.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: “Transport Phenomena.” J. Wiley & Sons, New York, London, Sydney, 1966.

    Google Scholar 

  2. Schlichting, H.: “Boundary-Layer Theory.” McGraw-Hill Book Comp., New York, 1979.

    Google Scholar 

  3. Rosenhead, L. (ed.): “Laminar Boundary Layers.” Oxford at the Clarendon Press, 1963.

    Google Scholar 

  4. White, F.M.: “Viscous Fluid Flow.” McGraw - Hill, New York, 1974.

    Google Scholar 

  5. Vincenti, W.G., Kruger, C.H.: “Physical Gas Dynamics.” J. Wiley & Sons, New York, London, Sydney, 1965.

    Google Scholar 

  6. Lighthill, M.J.: “Introduction Boundary-Layer Theory.” In Ref.3, pp.46–113.

    Google Scholar 

  7. Hirschel, E.H.: “On the Creation of Vorticity and Entropy in the Solution of the Euler Equations for Lifting Wings.” MBB-LKE122-AERO-MT-716, 1985.

    Google Scholar 

  8. Nash, J.F., Patel, V.C.: “Three-Dimensional Turbulent Boundary Layers.” SBC Technical Books, Atlanta, 1972.

    Google Scholar 

  9. Hirschel, E.H., Kordulla, W,: “Shear Flow in Surface Oriented Coordinates.” Vol.4 of Notes on Numerical Fluid Mechanics, Vieweg, Braunschweig/Wiesbaden, 1981.

    Google Scholar 

  10. Hirschel, E.H.: “Boundary-Layer Coordinates on General Wings and Fuselages.” ZFW, Vol.6, No.3, 1982, pp.194202.

    Google Scholar 

  11. Monnoyer, F.: “Calculation of Three-Dimensional Attached Viscous Flow on General Configurations with Second-Order Boundary-Layer Theory.” ZFW, Vol. 14, No. 1 /2, 1990, pp. 95–108.

    Google Scholar 

  12. Van den Berg, B., Humphreys, D.A., Krause, E., Lindhout, J.P.F.: “ Three-Dimensional Boundary Layers - Calculations and Experiments.” Vol.19 of Notes on Numerical Fluid Mechanics, Vieweg, Braunschweig/ Wiesbaden, 1988.

    Google Scholar 

  13. Fischer, T., Ehrenstein, U., Meyer, F.: “Theoretical Investigation of Instability and Transition in the DFVLR-F5 Swept-Wing Flow.” In: Zierep, J., Oertel, H. (eds.): Symposium Transsonicum III. Springer, BerlinHeidelberg-New York, 1989, pp. 243–252.

    Chapter  Google Scholar 

  14. Bushnell, D.M., Malik, M.R., Harvey, W.D.: “Transition Prediction in External Flows via Linear Stability Theory.” In: Zierep, J., Oertel, H. (eds.): Symposium Transsonicum III. Springer, Berlin-Heidelberg-New York, 1989. pp. 225–242.

    Chapter  Google Scholar 

  15. Hirschel, E.H.: “Computation of Three-Dimensional Boundary Layers on Fuselages.” J. of Aircraft, Vol. 21, No. 1, 1984, pp. 23–29.

    Article  Google Scholar 

  16. Hirschel, E.H., Bretthauer, N., Röhe, H.: “Theoretical and Experimental Boundary Layer Studies on Car Bodies.” J. Intern. Assoc. for Vehicle Design, Vol. 5, No. 5, 1984, pp. 567–584.

    Google Scholar 

  17. Hirschel, E.H.: “Evaluation of Results of Boundary-Layer Calculations with Regard to Design Aerodynamics.” In: Computation of Three-Dimensional Boundary Layers Including Separation. AGARD-R-741, 1986, pp.5–1 to 5–29.

    Google Scholar 

  18. Fernholz, H.H., Krause, E. (eds.): “Three-Dimensional Boundary Layers.” Springer, Berlin-Heidelberg, 1982.

    Google Scholar 

  19. N.N.: “Computation of Three-Dimensional Boundary Layers Including Separation.” AGARD-R-741, 1986.

    Google Scholar 

  20. Lighthill, M.J.: “On Displacement Thickness.” J. Fluid. Mech., Vol. 4, 1958, pp. 383–392.

    Article  MATH  MathSciNet  Google Scholar 

  21. Lock, R.C., Firmin, M.C.P.: “Survey of Techniques for Estimating Viscous Effects in External Aerodynamics.” In: Roe, P.L. (ed.): Numerical Methods in Aeronautical Fluid Dynamics. Academic Press, London, 1982, pp. 337–430.

    Google Scholar 

  22. Schumann, U., Friedrich, R. (eds.): “Direct and Large-Eddy Simulation of Turbulence”. Vol.15 of Notes on Numerical Fluid Mechanics, Vieweg, Braunschweig/ Wiesbaden, 1986.

    Google Scholar 

  23. Peake, D.J., Tobak, M.: “Three-Dimensional Interaction and Vortical Flows with Emphasis on High Speeds.” AGARDograph No. 252, 1980.

    Google Scholar 

  24. Dallmann, U.: “Topological Structures of Three-Dimensional Flow Separation.” AIAA-Paper 83–1735, 1983.

    Google Scholar 

  25. Hornung, H., Perry, A.E.: “Some Aspects of Three-Dimensional Separation, Part 1: Stream-Surface Separation.” ZFW, Vol. 8, No. 1, 1984, pp. 77–87.

    Google Scholar 

  26. Wu, J.-Z., Gu, J.W., Wu, J.-M.: “Steady Three-Dimensional Fluid Particle Separation from Arbitrary Smooth Surface and Formation of Free Vortex Layers.” ZFW, Vol. 12, No. 2, 1988, pp. 89–98.

    MATH  MathSciNet  Google Scholar 

  27. Shang, J.S.: “An Assessment of Numerical Solutions of the Compressible Navier-Stokes Equations.” J. of Aircraft, Vol. 22, No. 5, 1985, pp. 353–370.

    Article  Google Scholar 

  28. Fujii, K., Obayashi, S.: “Navier-Stokes Simulations of Transonic Flows over a Wing-Fuselage Combination.” AIAA-Journal, Vol. 25, No. 12, 1987, pp. 1587–1596.

    Article  MATH  Google Scholar 

  29. Kordulla, W. (ed.): “Numerical Simulation of the Transonic DFVLR-F5 Wing Experiment - Towards the Validation of Viscous Wing Flow Codes.” Vol.22 of Notes on Numerical Fluid Mechanics, Vieweg, Braunschweig/Wiesbaden, 1988.

    Google Scholar 

  30. Melnik, R.E., Chow, R.: “Asymptotic Theory of Two-Dimensional Trailing-Edge Flows.” NASA SP-347, 1975.

    Google Scholar 

  31. Dargel, G., Thiede, P.: “Viscous Transonic Airfoil Flow Simulation by an Efficient Viscous-Inviscid Interaction Method.” AIAA-Paper No. 87–0412, 1987.

    Google Scholar 

  32. Hirschel, E.H., Schmatz, M.A.: “Zonal Solutions for Viscous Flow Problems.” In: Hirschel, E.H. (ed.): Finite Approximations in Fluid Mechanics, DFG-Priority Research Programme, Results 1983–1985. Vol. 14 of Notes on Numerical Fluid Mechanics, Vieweg, Braunschweig/Wiesbaden, 1986, pp. 99–112.

    Google Scholar 

  33. Schmatz, M.A., Hirschel, E.H.: “Zonal Solutions for Airfoils Using Euler, Boundary-Layer and Navier-Stokes Equations.” In: Applications of Computational Fluid Dynamics in Aeronautics. AGARD CP 412, 1986, pp.20–1 to 20–13.

    Google Scholar 

  34. Schmatz, M.A.: “Simulation of Viscous Flows by Zonal Solutions of the Euler, Boundary-Layer and NavierStokes equations.” ZFW, Vol.11, No. 4 /5, 1987, pp. 281–290.

    Google Scholar 

  35. Wanie, K.M., Schmatz, M.A., Monnoyer, F.: “A Close Coupling Procedure for Zonal Solutions of the Navier-Stokes, Euler and Boundary-Layer Equations. ZFW, Vol. 11, No. 6, 1987, pp. 347–359.

    Google Scholar 

  36. Monnoyer, F., Wanie, K.M., Schmatz, M.A.: “Calculation of the Three-Dimensional Viscous Flow Past Ellipsoids at Incidence by Zonal Solutions.” In: Deville, M. (ed.): Proc. 7th GAMM-Conf. on Num. Meth. in Fluid Mechanics. Vol. 20 of Notes on Numerical Fluid Mechanics, Vieweg, Braunschweig Wiesbaden, 1988, pp. 229–238.

    Google Scholar 

  37. Schmatz, M.A., Monnoyer, F., Wanie, K.M., Hirschel, E.H.: “Zonal Solutions of Three-Dimensional Viscous Flow Problems.” In: Zierep, J., Oertel, H. (eds.): Symposium Transsonicum III. Springer, Berlin-Heidelberg-New York, 1989, pp. 65–74.

    Google Scholar 

  38. Wanie, K.M.: “Simulation dreidimensionaler viskoser Strömungen durch lokale Lösung der Navier-Stokesschen Gleichungen.” Doctoral Thesis, München, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Eberle, A., Rizzi, A., Hirschel, E.H. (1992). Coupling of Euler Solutions to Viscous Models. In: Numerical Solutions of the Euler Equations for Steady Flow Problems. Notes on Numerical Fluid Mechanics (NNFM), vol 48. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-06831-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-06831-0_9

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-07634-4

  • Online ISBN: 978-3-663-06831-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics