Skip to main content

Frame-artige Repräsentationsformate

  • Chapter
  • 97 Accesses

Part of the book series: Leitfäden der angewandten Informatik ((XLAI))

Zusammenfassung

Frame-artige Repräsentationsformate haben ihren Ursprung im Schema-Begriff der Kognitionspsychologie und gehen damit ebenso wie semantische Netze zurück auf kognitionspsychologische Modelle menschlichen Gedächtnisses —jedoch auf schema-artige und nicht auf die assoziativen Modelle, die semantischen Netzen zugrunde liegen. Unter einem Schema versteht man ein Modell für eine Gedächtnisstruktur, das nicht allein Assoziationen zwischen Begriffen berücksichtigt, sondern dem Phänomen stereotypischer Erinnerungsmuster besonders Rechnung trägt. Die dabei zugrundeliegende These, daß menschliche Kognitionsleistungen durch innere Ordnungstendenzen gesteuert werden, stammt ursprünglich aus der Gestalttheorie und wurde später von der Kognitionspsychologie wiederaufgenommen (vgl. Kap.4.5).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abiteboul, S. / Fischer, P.C. / Schek, H.-J. (eds): Nested Relations and Complex Objects in Databases. Berlin: Springer-Verlag, 1989.

    Book  MATH  Google Scholar 

  2. Allen, B.P. / Wright, J.M.: Integrating Logic Programs and Schemata. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1983, pp.340–342.

    Google Scholar 

  3. Anderson, J.R. / Bower, G.H.: Human Associative Memory. New York: John Wiley, 1973.

    Google Scholar 

  4. Attardi, G. / Simi, M.: A Uniform and Integrated Description System. In: W. Brauer, W. Wahlster (eds): Wissensbasierte Systeme. 2. Internationaler GI-Kongreß. Berlin: Springer-Verlag, 1987, pp.12–21.

    Google Scholar 

  5. Bachman, C.W. / Daya, M.: The Role Concept in Data Models. In: Proc. 3rd Int. Conf. on Very Large Data Bases, 1977, pp.464–476.

    Google Scholar 

  6. Bartlett, C. F.: Remembering: A Study in Experimental and Social Psychology. Cambridge: Cambridge University Press, 1932.

    Google Scholar 

  7. Batory, D.S. / Buchmann, A.P.: Molecular Objects, Abstract Data Types, and Data Models: A Framework. In: Proc. Int. Conf. on Very Large Data Bases, 1984, pp.172–184.

    Google Scholar 

  8. Bobrow, D.G. / Norman, D.A.: Some Principles of Memory Schemata. In: D.G. Bobrow, A. Collins (eds): Representation and Understanding. New York: Academic Press, 1975, pp.131–149.

    Google Scholar 

  9. Bobrow, D.G. / Winograd, T.: An Overview of KRL, a Knowledge Representation Language. In: Cognitive Science, Vold, No.1, 1977, pp.3–46. (auch in (Brachman/Levesque 85))

    Google Scholar 

  10. Brachman, R.J.: What’s in a Concept: Structural Foundations for Semantic Networks. In: Int. Journal of Man-Machine Studies, Vol.9, No.2, 1977, pp.127–152.

    Article  Google Scholar 

  11. Brachman, R.J.: “I Lied about the Trees” or, Defaults and Definitions in Knowledge Representation. In: AI Magazine, Vol.6, No.3, 1985, pp.80–93.

    Google Scholar 

  12. Brachman, R.J. / Fikes, R.E. / Levesque, H.J.: Krypton: A Functional Approach to Knowledge Representation. In: IEEE Computer, Vol.16, No.10, 1983, pp.67–73. (auch in (Brachman/Levesque 85))

    Article  Google Scholar 

  13. Brachman, R.J. / Gilbert, V.P. / Levesque, H.J.: An Essential Hybrid Reasoning System: Knowledge and Symbol Level Accounts of Krypton. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1985, pp.532–539.

    Google Scholar 

  14. Brachman, R.J. / Levesque, H.J.: The Tractability of Subsumption in FrameBased Description Languages. In: Proc. National Conf. on Artificial Intelligence, 1984, pp.34–37.

    Google Scholar 

  15. Brachman, R.J. / Levesque H.J. (eds): Readings in Knowledge Representation. Los Altos/Cal.: Morgan Kaufmann, 1985.

    MATH  Google Scholar 

  16. Brachman, R.J. / Schmolze, J.G.: An Overview of the KL-ONE Knowledge Representation System. In: Cognitive Science, Vol.9, No.2, 1985, pp.171–216.

    Article  Google Scholar 

  17. Brewka, G.: The Logic of Inheritance in Frame Systems. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1987, pp.483–488.

    Google Scholar 

  18. Brewka, G.: Nichtmonotone Logiken — Ein kurzer Überblick. In: KI 1989, No.2, pp.5–12.

    Google Scholar 

  19. Černý, A. / Kelemen, J.: FDT — An Approximation of an Abstract Frame-Like Data Type. In: 2nd Int. Meeting on Artificial Intelligence, Repino (USSR), Oct.12–19, 1980.

    Google Scholar 

  20. Charniak, E.: The Case-Slot Identity Theory. In: Cognitive Science, Vol.5, No.3, 1981, pp.285–292.

    Article  MathSciNet  Google Scholar 

  21. Charniak, E.: A Common Representation for Problem-Solving and LanguageComprehension Information. In: Artificial Intelligence Vol.16, 1981, pp.225–255.

    Article  MathSciNet  Google Scholar 

  22. Christaller, Th. / Primio, F. di / Voss, A. (eds): Die KI-Werkbank BABYLON. Bonn: Addison-Wesley, 1989.

    Google Scholar 

  23. Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. In: Communications of the ACM, Vol.13, No.6, 1970, pp.377–387.

    Article  MATH  Google Scholar 

  24. Date, C.J.: An Introduction to Database Systems. Vol. II. Reading/Mass.: AddisonWesley, 1983.

    Google Scholar 

  25. Dittrich, K.R.: Objektorientierte Datenbanksysteme. In: Informatik-Spektrum, Band 12, Heft 4, 1989, pp.215–218.

    Google Scholar 

  26. Edelmann, J. / Owsnicki, B.: Data Models in Knowledge Representation Systems: A Case Study. In: C.-R. Rollinger, W. Horn (eds): GWAI-86 und 2. Österreichische Artificial-Intelligence-Tagung. Berlin: Springer-Verlag, 1986, pp.69–74.

    Chapter  Google Scholar 

  27. Fikes, R. / Kehler, T.: The Role of Frame-Based Representation in Reasoning. In: Communications of the ACM, Vol.28, No.9, 1985, pp.904–920.

    Article  Google Scholar 

  28. Fillmore, C.J.: The Case for Case. In: E. Bach, R.T. Harms (eds): Universals in Linguistic Theory. New York: Holt, Rinehart & Winston, 1968, pp.1–88.

    Google Scholar 

  29. Fox, M.S. / Wright, J.M. / Adam, D.: Experiences with SRL: An Analysis of Frame-Based Knowledge Representations. In: L. Kerschberg (ed): Expert Database Systems. Proceedings from the First International Workshop. Menlo Park: Benjamin/Cummings, 1986, pp.161–172.

    Google Scholar 

  30. Goldstein, I.P. / Roberts, R.B.: NUDGE, a Knowledge-based Scheduling Program. In: D. Metzing(ed): Frame Conceptions and Text Understanding. Berlin: W. de Gruyter, 1980, pp.26–45.

    Google Scholar 

  31. Güsgen, H.W.: CONSAT: A System for Constraint Satisfaction. London: Pitman, 1989.

    Google Scholar 

  32. Härder, T. / Reuter, A.: Database Systems for Non-Standard Applications. In: Proc. Int. Computing Symposium on Application Systems Development, 1983, pp.452–466.

    Google Scholar 

  33. Hawkinson, L.: The Representation of Concepts in OWL. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1975, pp.107–114.

    Google Scholar 

  34. Hayes, P.J.: On Semantic Nets, Frames and Associations. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1977, pp.99–107.

    Google Scholar 

  35. Hayes, P.J.: The Logic of Frames. In: D. Metzing (ed): Frame Conceptions and Text Understanding. Berlin: W. de Gruyter, 1980, pp.46–61. (auch in (Brachman/Levesque 85))

    Google Scholar 

  36. Ito, H. / Ueno, H.: ZERO: Frame + Prolog. In: E. Wada (ed): Logic Programming ’85. Berlin: Springer-Verlag, 1986, pp.78–89.

    Google Scholar 

  37. Kaczmarek, T.S. / Bates, R. / Robins, G.: Recent Developments in NIKL. In: Proc. National Conf. on Artificial Intelligence, 1986, pp.978–985.

    Google Scholar 

  38. Kifer, M. / Lausen, G.: F-Logic: A Higher-Order Language for Reasoning about Objects, Inheritance, and Scheme. In: Proc. ACM SIGMOD Int. Conf. on the Management of Data, 1989, pp.134–146.

    Google Scholar 

  39. Kim, M. / Maida, A.S.: Frame Systems and Inheritance Systems. In: Proc. 1987 Fall Joint Computer Conference. Exploring Technology: Today and Tomorrow, 1987, pp.636–643.

    Google Scholar 

  40. Koffka, K.: Principles of Gestalt Psychology. London: Routledge & Kegan Paul, 1935.

    Google Scholar 

  41. Kolodner, J.L.: Retrieval and Organizational Strategies in Conceptual Memory: A Computer Model. Hillsdale/NJ: Lawrence Erlbaum Associates, 1984.

    Google Scholar 

  42. Kuipers, B.J.: A Frame for Frames: Representing Knowledge for Recognition. In: D.G. Bobrow, A. Collins (eds): Representation and Understanding. New York: Academic Press, 1975, pp.151–184.

    Google Scholar 

  43. Labov, W.: The Boundaries of Words and their Meanings. In: C.-J. N. Bailey, R.W. Shuy (eds): New Ways of Analyzing Variation in English, Vol.1. Washington: Georgetown University Press, 1973.

    Google Scholar 

  44. Lamersdorf, W.: Semantische Repräsentation komplexer Objektstrukturen. Modelle für nichtkonventionelle Datenbankanwendungen. Berlin: Springer-Verlag, 1985.

    Book  MATH  Google Scholar 

  45. Laubsch, J.: ObjTalk: Eine Lisp-Erweiterung zum objekt-orientierten Programmieren. Universität Stuttgart, Institut für Informatik, Institutsbericht 15/82, 1982.

    Google Scholar 

  46. Levesque, H.: Making Believers out of Computers. In: Artificial Intelligence, Vol.30, No.1, 1986, pp.81–108.

    Article  Google Scholar 

  47. Lore, R. / Kim, W. / McNabb, D. / Plouffe, W. / Meier, A.: Supporting Complex Objects in a Relational System for Engineering Databases. In: W. Kim, D.S. Reiner, D.S. Batory (eds): Query Processing in Database Systems. Berlin: Springer-Verlag, 1985, pp.145–155.

    Chapter  Google Scholar 

  48. Luck, K. von / Owsnicki-Klewe, B.: Neuere KI-Formalismen zur Repräsentation von Wissen. Eine Fallstudie. In: Th. Cristaller (ed): Künstliche Intelligenz. 5. Frühjahrsschule, KIFS-87. Berlin: Springer-Verlag, 1989, pp.157–187.

    Google Scholar 

  49. Martin, W.A.: Descriptions and the Specialization of Concepts. In: P.H. Winston, R.H. Brown (eds): Artificial Intelligence: An MIT Perspective. Vol.1. Cambridge/Mass.: The MIT Press, 1979, pp.375–419.

    Google Scholar 

  50. McDermott, D. / Doyle, J.: Non-Monotonic Logic I. In: Artificial Intelligence, Vol.13, 1980, pp.41–72.

    Article  MathSciNet  MATH  Google Scholar 

  51. Miller, G.A. / Johnson-Laird, P.N.: Language and Perception. Cambridge/Mass.: Harvard University Press, 1976.

    Google Scholar 

  52. Minsky, M.: A Framework for Representing Knowledge. In: P.H. Winston (ed): The Psychology of Computer Vision. New York: McGraw-Hill, 1975, pp.211–277. (auch in (Brachman/Levesque 85))

    Google Scholar 

  53. Mitschang, B.: Ein Molekül-Atom-Datenmodell für Non-Standard-Anwendungen. Anwendungsanalyse, Datenmodellentwurf und Implementierungskonzepte. Berlin: Springer-Verlag, 1988.

    MATH  Google Scholar 

  54. Nado, R. / Fikes, R.: Semantically Sound Inheritance for a Formally Defined Frame Language with Defaults. In: Proc. National Conf. on Artificial Intelligence, 1987, pp.443–448.

    Google Scholar 

  55. Nebel, B.: Computational Complexity of Terminological Reasoning in BACK. In: Artificial Intelligence, Vol.34, 1988, pp.371–383.

    Article  MathSciNet  MATH  Google Scholar 

  56. Nebel, B.: Reasoning and Revision in Hybrid Representation Systems. Berlin: Springer-Verlag, 1990.

    MATH  Google Scholar 

  57. Nebel, B. /Luck, K. von: Issues of Integration and Balancing in Hybrid Knowledge Representation Systems. In: K. Morik (ed): GWAI-87. 11th German Workshop on Artificial Intelligence. Berlin: Springer-Verlag, 1987, pp.114–123.

    Google Scholar 

  58. Neisser, U.: Cognitive Psychology. New York: Meredith, 1967.

    Google Scholar 

  59. Nierstrasz, O.: A Survey of Object-Oriented Concepts. In: W. Kim, F.H. Lochovsky (eds): Object-Oriented Concepts, Databases, and Applications. Reading/Mass.: Addison-Wesley, 1989, pp.3–21.

    Google Scholar 

  60. Palmer, S.E.: Visuelle Wahrnehmung und Wissen: Notizen zu einem Modell der sensorisch-kognitiven Interaktion. In: D.A. Norman, D.E. Rumelhart (eds): Strukturen des Wissens. Wege der Kognitionsforschung. Stuttgart: Klett-Cotta, 1978, pp.281–307.

    Google Scholar 

  61. Patel-Schneider, P.F.: Small can be Beautiful in Knowledge Representation. In: Proc. IEEE Workshop on Principles of Knowledge-Based Systems, 1984, pp.11–16.

    Google Scholar 

  62. Patel-Schneider, P.F.: A Four-Valued Semantics for Terminological Logics. In: Artificial Intelligence, Vol.38, No.3, 1989, pp.319–351.

    Article  MathSciNet  MATH  Google Scholar 

  63. Patel-Schneider, P.F.: Practical, Object-Based Knowledge Representation for Knowledge-Based Systems. In: Information Systems, Vol.15, No.1, 1990, pp.9–19.

    Article  Google Scholar 

  64. Peterson, J.L.: Petri Nets. In: ACM Computing Surveys, Vol.9, No.3, 1977, pp.223–252.

    Article  MATH  Google Scholar 

  65. Piaget, J.: Psychologie der Intelligenz. Zürich: Rascher Verlag, 1947.

    Book  Google Scholar 

  66. Rathke, C.: Objektorientierte Wissensrepräsentation. In: G. Fischer, R. Gunzenhäuser (eds): Methoden und Werkzeuge zur Gestaltung benutzergerechter Computersysteme. Berlin: W. de Gruyter, 1986, pp.45–72.

    Google Scholar 

  67. Reimer, U.: A Representation Construct for Roles. In: Data & Knowledge Engineering, Vol.1, 1985, pp.233–251.

    Article  Google Scholar 

  68. Reimer, U.: FRM: Ein Frame-Repräsentationsmodell und seine formale Semantik. Zur Integration von Datenbank- und Wissensrepräsentationsansätzen. Berlin: SpringerVerlag, 1989.

    Book  MATH  Google Scholar 

  69. Reimer, U. / Schek, H.-J.: A Frame-Based Knowledge Representation Model and Its Mapping to Nested Relations. In: Data & Knowledge Engineering, Vol.4, No.4, 1989, pp.321–352.

    Article  Google Scholar 

  70. Reisig, W.: Petrinetze. Eine Einführung. Berlin: Springer-Verlag, 1986.

    Google Scholar 

  71. Rich, C.: Knowledge Representation Languages and Predicate Calculus: How to Have Your Cake and Eat It Too. In: Proc. National Conf. on Artificial Intelligence, 1982, pp.193–196.

    Google Scholar 

  72. Richter, M.M.: Prinzipien der Künstlichen Intelligenz. Stuttgart: B.G. Teubner, 1989.

    MATH  Google Scholar 

  73. Roberts, R.B. / Goldstein, I.P.: The FRL Primer. Massachusetts Institute of Technology, Artificial Intelligence Laboratory, Memo 408, 1977.

    Google Scholar 

  74. Rosch, E.: Principles of Categorization. In: E. Rosch, B.B. Lloyd (eds): Cognition and Categorization. Hillsdale/NJ: Lawrence Erlbaum, 1978, pp.27–48.

    Google Scholar 

  75. Rumelhart, D.E. / Ortony, A.: The Representation of Knowledge in Memory. In: R.C. Anderson, R.J. Spiro, W.E. Montague (eds): Schooling and the Acquisition of Knowledge. Hillsdale/N.J.: Lawrence Erlbaum, 1977, pp.99–135.

    Google Scholar 

  76. Schank, R.C. / Abelson, R.P.: Scripts, Plans, Goals and Understanding: An Inquiry into Human Knowledge Structures. Hillsdale/NJ: Lawrence Erlbaum, 1977.

    MATH  Google Scholar 

  77. Schmidt-Schauß, M.: Subsumption in KL-ONE is Undecidable. In: R.J. Brachman, H.J. Levesque, R. Reiter (eds): Proceedings of the First International Conference on Principles of Knowledge Representation and Reasoning. San Mateo/Cal.: Morgan Kaufmann, 1989, pp.421–431.

    Google Scholar 

  78. Schmolze, J.G. / Lipkis, T.A.: Classification in the KL-ONE Knowledge Representation System. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1983, pp.330–332.

    Google Scholar 

  79. Simi, M. / Motta, E.: Omega: An Integrated Reflective Framework. In: P. Maes, D. Nardi (eds): Meta-Level Architectures and Reflection. Amsterdam: North-Holland, 1988, pp.209–226.

    Google Scholar 

  80. Sridharan, N.S.: AIMDS User Manual — Version 2. Rutgers University, Dept. of Computer Science, Technical Report CBM-TR-89, 1978.

    Google Scholar 

  81. Sridharan, N.S.: Artificial Intelligence. Representing Knowledge in AIMDS. In: Informatica e Diritto, Florenz, IT 7, 1981, pp.201–221.

    Google Scholar 

  82. Stefik, M.: An Examination of a Frame-Structured Representation System. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1979, pp.845–852.

    Google Scholar 

  83. Stoyan, H.: Programmiermethoden der Künstlichen Intelligenz. Band 2. Berlin: Springer-Verlag, 1991.

    MATH  Google Scholar 

  84. Stoyan, H. / Görz, G.: Was ist objektorientierte Programmierung? In: H. Stoyan, H. Wedekind (eds): Objektorientierte Software- und Hardwarearchitekturen. Stuttgart: Teubner, 1983, pp.9–31.

    Google Scholar 

  85. Studer, R. / Börner, S.: An Approach to Manage Large Inheritance Networks Within a DBS Supporting Nested Relations. In: (Abiteboul et al. 89), pp.229–239.

    Google Scholar 

  86. Trost, H. / Steinacker, I.: The Role of Roles: Some Aspects of Real World Knowledge Representation. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1981, pp.237–239.

    Google Scholar 

  87. Turner, R.: Logics for Artificial Intelligence. Chichester: Ellis Horwood, 1984.

    Google Scholar 

  88. Vilain, M.: The Restricted Language Architecture of a Hybrid Representation System. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1985, pp.547–551.

    Google Scholar 

  89. Wilensky, R.: Knowledge Representation — A Critique and a Proposal. In: J.L. Kolodner, C.K. Riesbeck (eds): Experience, Memory, and Reasoning. Hillsdale/NJ: Lawrence Erlbaum, 1986, pp.15–28.

    Google Scholar 

  90. Winograd, T.: Frame Representations and the Declarative/Procedural Controversy. In: D.G. Bobrow, A. Collins (eds): Representation and Understanding. New York: Academic Press, 1975, pp.185–210. (auch in (Brachman/Levesque 85))

    Google Scholar 

  91. Woods, W.A.: What’s in a Link: Foundations for Semantic Networks. In: D.G. Bobrow, A. Collins (eds): Representation and Understanding. New York: Academic Press, 1975, pp.35–82. (auch in (Brachman/Levesque 85))

    Google Scholar 

  92. Young, S.J. / Proctor, C.: UFL: An Experimental Frame Language Based on Abstract Data Types. In: The Computer Journal, Vol.29, No.4, 1986, pp.340–347.

    Article  MATH  Google Scholar 

  93. Zelewski, S.: Komplexitätstheorie (als Instrument zur Klassifizierung und Beurteilung von Problemen des Operations Research). Braunschweig: Friedr. Vieweg & Sohn, 1989.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 B. G. Teubner Stuttgart

About this chapter

Cite this chapter

Reimer, U. (1991). Frame-artige Repräsentationsformate. In: Einführung in die Wissensrepräsentation. Leitfäden der angewandten Informatik. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-05970-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-05970-7_4

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-519-02241-1

  • Online ISBN: 978-3-663-05970-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics