Advertisement

Frame-artige Repräsentationsformate

Chapter
  • 69 Downloads
Part of the Leitfäden der angewandten Informatik book series (XLAI)

Zusammenfassung

Frame-artige Repräsentationsformate haben ihren Ursprung im Schema-Begriff der Kognitionspsychologie und gehen damit ebenso wie semantische Netze zurück auf kognitionspsychologische Modelle menschlichen Gedächtnisses —jedoch auf schema-artige und nicht auf die assoziativen Modelle, die semantischen Netzen zugrunde liegen. Unter einem Schema versteht man ein Modell für eine Gedächtnisstruktur, das nicht allein Assoziationen zwischen Begriffen berücksichtigt, sondern dem Phänomen stereotypischer Erinnerungsmuster besonders Rechnung trägt. Die dabei zugrundeliegende These, daß menschliche Kognitionsleistungen durch innere Ordnungstendenzen gesteuert werden, stammt ursprünglich aus der Gestalttheorie und wurde später von der Kognitionspsychologie wiederaufgenommen (vgl. Kap.4.5).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [89]
    Abiteboul, S. / Fischer, P.C. / Schek, H.-J. (eds): Nested Relations and Complex Objects in Databases. Berlin: Springer-Verlag, 1989.zbMATHCrossRefGoogle Scholar
  2. [83]
    Allen, B.P. / Wright, J.M.: Integrating Logic Programs and Schemata. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1983, pp.340–342.Google Scholar
  3. [73]
    Anderson, J.R. / Bower, G.H.: Human Associative Memory. New York: John Wiley, 1973.Google Scholar
  4. [87]
    Attardi, G. / Simi, M.: A Uniform and Integrated Description System. In: W. Brauer, W. Wahlster (eds): Wissensbasierte Systeme. 2. Internationaler GI-Kongreß. Berlin: Springer-Verlag, 1987, pp.12–21.Google Scholar
  5. [77]
    Bachman, C.W. / Daya, M.: The Role Concept in Data Models. In: Proc. 3rd Int. Conf. on Very Large Data Bases, 1977, pp.464–476.Google Scholar
  6. [32]
    Bartlett, C. F.: Remembering: A Study in Experimental and Social Psychology. Cambridge: Cambridge University Press, 1932.Google Scholar
  7. [84]
    Batory, D.S. / Buchmann, A.P.: Molecular Objects, Abstract Data Types, and Data Models: A Framework. In: Proc. Int. Conf. on Very Large Data Bases, 1984, pp.172–184.Google Scholar
  8. [75]
    Bobrow, D.G. / Norman, D.A.: Some Principles of Memory Schemata. In: D.G. Bobrow, A. Collins (eds): Representation and Understanding. New York: Academic Press, 1975, pp.131–149.Google Scholar
  9. [77]
    Bobrow, D.G. / Winograd, T.: An Overview of KRL, a Knowledge Representation Language. In: Cognitive Science, Vold, No.1, 1977, pp.3–46. (auch in (Brachman/Levesque 85))Google Scholar
  10. [77]
    Brachman, R.J.: What’s in a Concept: Structural Foundations for Semantic Networks. In: Int. Journal of Man-Machine Studies, Vol.9, No.2, 1977, pp.127–152.CrossRefGoogle Scholar
  11. [85]
    Brachman, R.J.: “I Lied about the Trees” or, Defaults and Definitions in Knowledge Representation. In: AI Magazine, Vol.6, No.3, 1985, pp.80–93.Google Scholar
  12. [83]
    Brachman, R.J. / Fikes, R.E. / Levesque, H.J.: Krypton: A Functional Approach to Knowledge Representation. In: IEEE Computer, Vol.16, No.10, 1983, pp.67–73. (auch in (Brachman/Levesque 85))CrossRefGoogle Scholar
  13. [85]
    Brachman, R.J. / Gilbert, V.P. / Levesque, H.J.: An Essential Hybrid Reasoning System: Knowledge and Symbol Level Accounts of Krypton. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1985, pp.532–539.Google Scholar
  14. [84]
    Brachman, R.J. / Levesque, H.J.: The Tractability of Subsumption in FrameBased Description Languages. In: Proc. National Conf. on Artificial Intelligence, 1984, pp.34–37.Google Scholar
  15. [85]
    Brachman, R.J. / Levesque H.J. (eds): Readings in Knowledge Representation. Los Altos/Cal.: Morgan Kaufmann, 1985.zbMATHGoogle Scholar
  16. [85]
    Brachman, R.J. / Schmolze, J.G.: An Overview of the KL-ONE Knowledge Representation System. In: Cognitive Science, Vol.9, No.2, 1985, pp.171–216.CrossRefGoogle Scholar
  17. [87]
    Brewka, G.: The Logic of Inheritance in Frame Systems. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1987, pp.483–488.Google Scholar
  18. [89]
    Brewka, G.: Nichtmonotone Logiken — Ein kurzer Überblick. In: KI 1989, No.2, pp.5–12.Google Scholar
  19. [80]
    Černý, A. / Kelemen, J.: FDT — An Approximation of an Abstract Frame-Like Data Type. In: 2nd Int. Meeting on Artificial Intelligence, Repino (USSR), Oct.12–19, 1980.Google Scholar
  20. [81a]
    Charniak, E.: The Case-Slot Identity Theory. In: Cognitive Science, Vol.5, No.3, 1981, pp.285–292.MathSciNetCrossRefGoogle Scholar
  21. [81b]
    Charniak, E.: A Common Representation for Problem-Solving and LanguageComprehension Information. In: Artificial Intelligence Vol.16, 1981, pp.225–255.MathSciNetCrossRefGoogle Scholar
  22. [89]
    Christaller, Th. / Primio, F. di / Voss, A. (eds): Die KI-Werkbank BABYLON. Bonn: Addison-Wesley, 1989.Google Scholar
  23. [70]
    Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. In: Communications of the ACM, Vol.13, No.6, 1970, pp.377–387.zbMATHCrossRefGoogle Scholar
  24. [83]
    Date, C.J.: An Introduction to Database Systems. Vol. II. Reading/Mass.: AddisonWesley, 1983.Google Scholar
  25. [89]
    Dittrich, K.R.: Objektorientierte Datenbanksysteme. In: Informatik-Spektrum, Band 12, Heft 4, 1989, pp.215–218.Google Scholar
  26. [86]
    Edelmann, J. / Owsnicki, B.: Data Models in Knowledge Representation Systems: A Case Study. In: C.-R. Rollinger, W. Horn (eds): GWAI-86 und 2. Österreichische Artificial-Intelligence-Tagung. Berlin: Springer-Verlag, 1986, pp.69–74.CrossRefGoogle Scholar
  27. [85]
    Fikes, R. / Kehler, T.: The Role of Frame-Based Representation in Reasoning. In: Communications of the ACM, Vol.28, No.9, 1985, pp.904–920.CrossRefGoogle Scholar
  28. [68]
    Fillmore, C.J.: The Case for Case. In: E. Bach, R.T. Harms (eds): Universals in Linguistic Theory. New York: Holt, Rinehart & Winston, 1968, pp.1–88.Google Scholar
  29. [86]
    Fox, M.S. / Wright, J.M. / Adam, D.: Experiences with SRL: An Analysis of Frame-Based Knowledge Representations. In: L. Kerschberg (ed): Expert Database Systems. Proceedings from the First International Workshop. Menlo Park: Benjamin/Cummings, 1986, pp.161–172.Google Scholar
  30. [80]
    Goldstein, I.P. / Roberts, R.B.: NUDGE, a Knowledge-based Scheduling Program. In: D. Metzing(ed): Frame Conceptions and Text Understanding. Berlin: W. de Gruyter, 1980, pp.26–45.Google Scholar
  31. [89]
    Güsgen, H.W.: CONSAT: A System for Constraint Satisfaction. London: Pitman, 1989.Google Scholar
  32. [83]
    Härder, T. / Reuter, A.: Database Systems for Non-Standard Applications. In: Proc. Int. Computing Symposium on Application Systems Development, 1983, pp.452–466.Google Scholar
  33. [75]
    Hawkinson, L.: The Representation of Concepts in OWL. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1975, pp.107–114.Google Scholar
  34. [77]
    Hayes, P.J.: On Semantic Nets, Frames and Associations. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1977, pp.99–107.Google Scholar
  35. [80]
    Hayes, P.J.: The Logic of Frames. In: D. Metzing (ed): Frame Conceptions and Text Understanding. Berlin: W. de Gruyter, 1980, pp.46–61. (auch in (Brachman/Levesque 85))Google Scholar
  36. [86]
    Ito, H. / Ueno, H.: ZERO: Frame + Prolog. In: E. Wada (ed): Logic Programming ’85. Berlin: Springer-Verlag, 1986, pp.78–89.Google Scholar
  37. [86]
    Kaczmarek, T.S. / Bates, R. / Robins, G.: Recent Developments in NIKL. In: Proc. National Conf. on Artificial Intelligence, 1986, pp.978–985.Google Scholar
  38. [89]
    Kifer, M. / Lausen, G.: F-Logic: A Higher-Order Language for Reasoning about Objects, Inheritance, and Scheme. In: Proc. ACM SIGMOD Int. Conf. on the Management of Data, 1989, pp.134–146.Google Scholar
  39. [87]
    Kim, M. / Maida, A.S.: Frame Systems and Inheritance Systems. In: Proc. 1987 Fall Joint Computer Conference. Exploring Technology: Today and Tomorrow, 1987, pp.636–643.Google Scholar
  40. [35]
    Koffka, K.: Principles of Gestalt Psychology. London: Routledge & Kegan Paul, 1935.Google Scholar
  41. [84]
    Kolodner, J.L.: Retrieval and Organizational Strategies in Conceptual Memory: A Computer Model. Hillsdale/NJ: Lawrence Erlbaum Associates, 1984.Google Scholar
  42. [75]
    Kuipers, B.J.: A Frame for Frames: Representing Knowledge for Recognition. In: D.G. Bobrow, A. Collins (eds): Representation and Understanding. New York: Academic Press, 1975, pp.151–184.Google Scholar
  43. [73]
    Labov, W.: The Boundaries of Words and their Meanings. In: C.-J. N. Bailey, R.W. Shuy (eds): New Ways of Analyzing Variation in English, Vol.1. Washington: Georgetown University Press, 1973.Google Scholar
  44. [85]
    Lamersdorf, W.: Semantische Repräsentation komplexer Objektstrukturen. Modelle für nichtkonventionelle Datenbankanwendungen. Berlin: Springer-Verlag, 1985.zbMATHCrossRefGoogle Scholar
  45. [82]
    Laubsch, J.: ObjTalk: Eine Lisp-Erweiterung zum objekt-orientierten Programmieren. Universität Stuttgart, Institut für Informatik, Institutsbericht 15/82, 1982.Google Scholar
  46. [86]
    Levesque, H.: Making Believers out of Computers. In: Artificial Intelligence, Vol.30, No.1, 1986, pp.81–108.CrossRefGoogle Scholar
  47. [85]
    Lore, R. / Kim, W. / McNabb, D. / Plouffe, W. / Meier, A.: Supporting Complex Objects in a Relational System for Engineering Databases. In: W. Kim, D.S. Reiner, D.S. Batory (eds): Query Processing in Database Systems. Berlin: Springer-Verlag, 1985, pp.145–155.CrossRefGoogle Scholar
  48. [89]
    Luck, K. von / Owsnicki-Klewe, B.: Neuere KI-Formalismen zur Repräsentation von Wissen. Eine Fallstudie. In: Th. Cristaller (ed): Künstliche Intelligenz. 5. Frühjahrsschule, KIFS-87. Berlin: Springer-Verlag, 1989, pp.157–187.Google Scholar
  49. [79]
    Martin, W.A.: Descriptions and the Specialization of Concepts. In: P.H. Winston, R.H. Brown (eds): Artificial Intelligence: An MIT Perspective. Vol.1. Cambridge/Mass.: The MIT Press, 1979, pp.375–419.Google Scholar
  50. [80]
    McDermott, D. / Doyle, J.: Non-Monotonic Logic I. In: Artificial Intelligence, Vol.13, 1980, pp.41–72.MathSciNetzbMATHCrossRefGoogle Scholar
  51. [76]
    Miller, G.A. / Johnson-Laird, P.N.: Language and Perception. Cambridge/Mass.: Harvard University Press, 1976.Google Scholar
  52. [75]
    Minsky, M.: A Framework for Representing Knowledge. In: P.H. Winston (ed): The Psychology of Computer Vision. New York: McGraw-Hill, 1975, pp.211–277. (auch in (Brachman/Levesque 85))Google Scholar
  53. [88]
    Mitschang, B.: Ein Molekül-Atom-Datenmodell für Non-Standard-Anwendungen. Anwendungsanalyse, Datenmodellentwurf und Implementierungskonzepte. Berlin: Springer-Verlag, 1988.zbMATHGoogle Scholar
  54. [87]
    Nado, R. / Fikes, R.: Semantically Sound Inheritance for a Formally Defined Frame Language with Defaults. In: Proc. National Conf. on Artificial Intelligence, 1987, pp.443–448.Google Scholar
  55. [88]
    Nebel, B.: Computational Complexity of Terminological Reasoning in BACK. In: Artificial Intelligence, Vol.34, 1988, pp.371–383.MathSciNetzbMATHCrossRefGoogle Scholar
  56. [90]
    Nebel, B.: Reasoning and Revision in Hybrid Representation Systems. Berlin: Springer-Verlag, 1990.zbMATHGoogle Scholar
  57. [87]
    Nebel, B. /Luck, K. von: Issues of Integration and Balancing in Hybrid Knowledge Representation Systems. In: K. Morik (ed): GWAI-87. 11th German Workshop on Artificial Intelligence. Berlin: Springer-Verlag, 1987, pp.114–123.Google Scholar
  58. [67]
    Neisser, U.: Cognitive Psychology. New York: Meredith, 1967.Google Scholar
  59. [89]
    Nierstrasz, O.: A Survey of Object-Oriented Concepts. In: W. Kim, F.H. Lochovsky (eds): Object-Oriented Concepts, Databases, and Applications. Reading/Mass.: Addison-Wesley, 1989, pp.3–21.Google Scholar
  60. [78]
    Palmer, S.E.: Visuelle Wahrnehmung und Wissen: Notizen zu einem Modell der sensorisch-kognitiven Interaktion. In: D.A. Norman, D.E. Rumelhart (eds): Strukturen des Wissens. Wege der Kognitionsforschung. Stuttgart: Klett-Cotta, 1978, pp.281–307.Google Scholar
  61. [84]
    Patel-Schneider, P.F.: Small can be Beautiful in Knowledge Representation. In: Proc. IEEE Workshop on Principles of Knowledge-Based Systems, 1984, pp.11–16.Google Scholar
  62. [89]
    Patel-Schneider, P.F.: A Four-Valued Semantics for Terminological Logics. In: Artificial Intelligence, Vol.38, No.3, 1989, pp.319–351.MathSciNetzbMATHCrossRefGoogle Scholar
  63. [90]
    Patel-Schneider, P.F.: Practical, Object-Based Knowledge Representation for Knowledge-Based Systems. In: Information Systems, Vol.15, No.1, 1990, pp.9–19.CrossRefGoogle Scholar
  64. [77]
    Peterson, J.L.: Petri Nets. In: ACM Computing Surveys, Vol.9, No.3, 1977, pp.223–252.zbMATHCrossRefGoogle Scholar
  65. [47]
    Piaget, J.: Psychologie der Intelligenz. Zürich: Rascher Verlag, 1947.CrossRefGoogle Scholar
  66. [86]
    Rathke, C.: Objektorientierte Wissensrepräsentation. In: G. Fischer, R. Gunzenhäuser (eds): Methoden und Werkzeuge zur Gestaltung benutzergerechter Computersysteme. Berlin: W. de Gruyter, 1986, pp.45–72.Google Scholar
  67. [85]
    Reimer, U.: A Representation Construct for Roles. In: Data & Knowledge Engineering, Vol.1, 1985, pp.233–251.CrossRefGoogle Scholar
  68. [89]
    Reimer, U.: FRM: Ein Frame-Repräsentationsmodell und seine formale Semantik. Zur Integration von Datenbank- und Wissensrepräsentationsansätzen. Berlin: SpringerVerlag, 1989.zbMATHCrossRefGoogle Scholar
  69. [89]
    Reimer, U. / Schek, H.-J.: A Frame-Based Knowledge Representation Model and Its Mapping to Nested Relations. In: Data & Knowledge Engineering, Vol.4, No.4, 1989, pp.321–352.CrossRefGoogle Scholar
  70. [86]
    Reisig, W.: Petrinetze. Eine Einführung. Berlin: Springer-Verlag, 1986.Google Scholar
  71. [82]
    Rich, C.: Knowledge Representation Languages and Predicate Calculus: How to Have Your Cake and Eat It Too. In: Proc. National Conf. on Artificial Intelligence, 1982, pp.193–196.Google Scholar
  72. [89]
    Richter, M.M.: Prinzipien der Künstlichen Intelligenz. Stuttgart: B.G. Teubner, 1989.zbMATHGoogle Scholar
  73. [77]
    Roberts, R.B. / Goldstein, I.P.: The FRL Primer. Massachusetts Institute of Technology, Artificial Intelligence Laboratory, Memo 408, 1977.Google Scholar
  74. [78]
    Rosch, E.: Principles of Categorization. In: E. Rosch, B.B. Lloyd (eds): Cognition and Categorization. Hillsdale/NJ: Lawrence Erlbaum, 1978, pp.27–48.Google Scholar
  75. [77]
    Rumelhart, D.E. / Ortony, A.: The Representation of Knowledge in Memory. In: R.C. Anderson, R.J. Spiro, W.E. Montague (eds): Schooling and the Acquisition of Knowledge. Hillsdale/N.J.: Lawrence Erlbaum, 1977, pp.99–135.Google Scholar
  76. [77]
    Schank, R.C. / Abelson, R.P.: Scripts, Plans, Goals and Understanding: An Inquiry into Human Knowledge Structures. Hillsdale/NJ: Lawrence Erlbaum, 1977.zbMATHGoogle Scholar
  77. [89]
    Schmidt-Schauß, M.: Subsumption in KL-ONE is Undecidable. In: R.J. Brachman, H.J. Levesque, R. Reiter (eds): Proceedings of the First International Conference on Principles of Knowledge Representation and Reasoning. San Mateo/Cal.: Morgan Kaufmann, 1989, pp.421–431.Google Scholar
  78. [83]
    Schmolze, J.G. / Lipkis, T.A.: Classification in the KL-ONE Knowledge Representation System. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1983, pp.330–332.Google Scholar
  79. [88]
    Simi, M. / Motta, E.: Omega: An Integrated Reflective Framework. In: P. Maes, D. Nardi (eds): Meta-Level Architectures and Reflection. Amsterdam: North-Holland, 1988, pp.209–226.Google Scholar
  80. [78]
    Sridharan, N.S.: AIMDS User Manual — Version 2. Rutgers University, Dept. of Computer Science, Technical Report CBM-TR-89, 1978.Google Scholar
  81. [81]
    Sridharan, N.S.: Artificial Intelligence. Representing Knowledge in AIMDS. In: Informatica e Diritto, Florenz, IT 7, 1981, pp.201–221.Google Scholar
  82. [79]
    Stefik, M.: An Examination of a Frame-Structured Representation System. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1979, pp.845–852.Google Scholar
  83. [91]
    Stoyan, H.: Programmiermethoden der Künstlichen Intelligenz. Band 2. Berlin: Springer-Verlag, 1991.zbMATHGoogle Scholar
  84. [83]
    Stoyan, H. / Görz, G.: Was ist objektorientierte Programmierung? In: H. Stoyan, H. Wedekind (eds): Objektorientierte Software- und Hardwarearchitekturen. Stuttgart: Teubner, 1983, pp.9–31.Google Scholar
  85. [89]
    Studer, R. / Börner, S.: An Approach to Manage Large Inheritance Networks Within a DBS Supporting Nested Relations. In: (Abiteboul et al. 89), pp.229–239.Google Scholar
  86. [81]
    Trost, H. / Steinacker, I.: The Role of Roles: Some Aspects of Real World Knowledge Representation. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1981, pp.237–239.Google Scholar
  87. [84]
    Turner, R.: Logics for Artificial Intelligence. Chichester: Ellis Horwood, 1984.Google Scholar
  88. [85]
    Vilain, M.: The Restricted Language Architecture of a Hybrid Representation System. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1985, pp.547–551.Google Scholar
  89. [86]
    Wilensky, R.: Knowledge Representation — A Critique and a Proposal. In: J.L. Kolodner, C.K. Riesbeck (eds): Experience, Memory, and Reasoning. Hillsdale/NJ: Lawrence Erlbaum, 1986, pp.15–28.Google Scholar
  90. [75]
    Winograd, T.: Frame Representations and the Declarative/Procedural Controversy. In: D.G. Bobrow, A. Collins (eds): Representation and Understanding. New York: Academic Press, 1975, pp.185–210. (auch in (Brachman/Levesque 85))Google Scholar
  91. [75]
    Woods, W.A.: What’s in a Link: Foundations for Semantic Networks. In: D.G. Bobrow, A. Collins (eds): Representation and Understanding. New York: Academic Press, 1975, pp.35–82. (auch in (Brachman/Levesque 85))Google Scholar
  92. [86]
    Young, S.J. / Proctor, C.: UFL: An Experimental Frame Language Based on Abstract Data Types. In: The Computer Journal, Vol.29, No.4, 1986, pp.340–347.zbMATHCrossRefGoogle Scholar
  93. [89]
    Zelewski, S.: Komplexitätstheorie (als Instrument zur Klassifizierung und Beurteilung von Problemen des Operations Research). Braunschweig: Friedr. Vieweg & Sohn, 1989.zbMATHGoogle Scholar

Copyright information

© B. G. Teubner Stuttgart 1991

Authors and Affiliations

  1. 1.Universität KonstanzDeutschland

Personalised recommendations