Advertisement

Nicht-objektzentrierte Repräsentationsformate

Chapter
  • 66 Downloads
Part of the Leitfäden der angewandten Informatik book series (XLAI)

Zusammenfassung

Dieses Kapitel befaßt sich mit Repräsentationsformaten, die als nicht-objektzentriert bezeichnet werden können. Damit ist gemeint, daß die zu einem Konzept vorliegenden Aussagen über die Gesamtrepräsentation verteilt und nicht jeweils zentral in einer Konzeptbeschreibung zusammengefaßt sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Literatur zu Kapitel 2.2: Logik

  1. [84]
    Allen, J.F.: A General Theory of Action and Time. In: Artificial Intelligence, Vol.21, 1984, pp.121–154.Google Scholar
  2. [86]
    Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof. Orlando: Academic Press, 1986.zbMATHGoogle Scholar
  3. [87]
    Attardi, G. / Simi, M.: A Uniform and Integrated Description System. In: W. Brauer, W. Wahlster (eds): Wissensbasierte Systeme. 2. Internationaler GI-Kongreß. Berlin: Springer-Verlag, 1987, pp.12–21.Google Scholar
  4. [87]
    Baaz, M.: Automatisches Beweisen für Logiksysteme, in denen Widersprüche behandelt werden können. In: E. Buchberger, J. Retti (eds): 3. Österreichische ArtificialIntelligence-Tagung. Berlin: Springer-Verlag, 1987, pp.176–181.CrossRefGoogle Scholar
  5. [88]
    Beckstein, C.: Zur Logik der Logik-Programmierung. Ein konstruktiver Ansatz. Berlin: Springer-Verlag, 1988.zbMATHGoogle Scholar
  6. [77]
    Belnap, N.D.: A Useful Four-Valued Logic. In: J.M. Dunn, G. Epstein (eds): Modern Uses of Mulitple-Valued Logic. Dordrecht: D. Reidel, 1977, pp.8–37.Google Scholar
  7. [83]
    Benthem, J. van: The Logic of Time. Dordrecht: D. Reidel, 1983.zbMATHGoogle Scholar
  8. [77]
    Bergmann, E. / Noll, H.: Mathematische Logik mit Informatik-Anwendungen. Berlin: Springer-Verlag, 1977.zbMATHCrossRefGoogle Scholar
  9. [89]
    Besnard, P.: An Introduction to Default Logic. Berlin: Springer-Verlag, 1989.zbMATHGoogle Scholar
  10. [86]
    Bibel, W.: Methods of Automated Reasoning: A Tutorial. In: W. Bibel, Ph. Jorrand (eds): Fundamentals of Artificial Intelligence. Berlin: Springer-Verlag, 1986, pp.171–217.CrossRefGoogle Scholar
  11. [77]
    Bledsoe, W.W.: Non-Resolution Theorem Proving. In: Artificial Intelligence, Vol.9, No.1, 1977, pp.1–35.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [85]
    Brachman, R.J. / Levesque, H.J. (eds): Readings in Knowledge Representation. Los Altos/Cal.: Morgan Kaufmann, 1985.zbMATHGoogle Scholar
  13. [89]
    Brewka, G.: Nichtmonotone Logiken — Ein kurzer Überblick. In: KI 2/89, 1989, pp.5–12.Google Scholar
  14. [83]
    Bundy, A.: The Computer Modelling of Mathematical Reasoning. London: Academic Press, 1983.zbMATHGoogle Scholar
  15. [73]
    Chang, C.-L. / Lee, R.C.-T.: Symbolic Logic and Mechanical Theorem Proving. New York: Academic Press, 1973.zbMATHGoogle Scholar
  16. [89]
    Corlett, R. / Davies, N. / Khan, R. / Reichgelt, H. / Harmelen, F. van: The Architecture of Socrates. In: P. Jackson, H. Reichgelt, F. van Harmelen (eds): LogicBased Knowledge Representation. Cambridge/Mass.: The MIT Press, 1989, pp.37–64.Google Scholar
  17. [87]
    Dahl, V.: Representing Virtual Knowledge Through Logic Programming. In: N. Cercone, G. McCalla (eds): The Knowledge Frontier. Essays in the Representation of Knowledge. New York: Springer-Verlag, 1987, pp.316–330.Google Scholar
  18. [78]
    Dilger, W. / Zifonun, G.: The Predicate Calculus-Language KS as a Query Language. In: H. Gallaire, J. Minker (eds): Logic and Data Bases. New York: Plenum Press, 1978, pp.377–408.CrossRefGoogle Scholar
  19. [89]
    Dressler, O. / Freitag, H.: Truth Maintenance Systeme. In: KI 2/89, 1989, pp.13–19.Google Scholar
  20. [88]
    Dubois, D. / Prade, H.: An Introduction to Possibilistic and Fuzzy Logics. In: Ph. Smets, A. Mamdani, D. Dubois, H. Prade (eds): Non-Standard Logics for Automated Reasoning. London: Academic Press, 1988, pp.287–326.Google Scholar
  21. [77]
    Dumitriu, A.: History of Logic. Vols.1–4. Tunbridge Wells/England: Abacus Press, 1977.Google Scholar
  22. [87]
    Eisinger, N. / Ohlbach, H.J.: Kapitel II: Gundlagen und Beispiele. In: K.H. Blasius, H.-J. Bürckert (eds): Deduktionssysteme. Automatisierung des logischen Denkens. München: R. Oldenbourg Verlag, 1987, pp.22–83.Google Scholar
  23. [87]
    Elcock, E.W.: First-Order Logic and Knowledge Representation: Some Problems of Incomplete Systems. In: N. Cercone, G. McCalla (eds): The Knowledge Frontier. Essays in the Representation of Knowledge. New York: Springer-Verlag, 1987, pp.161–173.Google Scholar
  24. [89]
    Elfrink, B. / Reichgelt, H.: Assertion-Time Inference in Logic-Based Systems. In: P. Jackson, H. Reichgelt, F. van Harmelen (eds): Logic-Based Knowledge Representation. Cambridge/Mass.: The MIT Press, 1989, pp.113–141.Google Scholar
  25. [86]
    Frost, R.A.: Introduction to Knowledge Base Systems. London: Collins, 1986.Google Scholar
  26. [82]
    Gallaire, H. / Lasserre, C.: Metalevel Control for Logic Programs. In: K.L. Clark, S.-A. Tärnlund (eds): Logic Programming. London: Academic Press, 1982, pp.173–185.Google Scholar
  27. [78]
    Gallaire, H. / Minker, J. (eds): Logic and Data Bases. New York: Plenum Press, 1978.zbMATHGoogle Scholar
  28. [87]
    Genesereth, M.R. / Nilsson, N.J.: Logical Foundations of Artificial Intelligence. Los Altos/Cal.: Morgan Kaufmann, 1987.zbMATHGoogle Scholar
  29. [89]
    Gottwald, S.: Mehrwertige Logik. Eine Einführung in Theorie und Anwendungen. Berlin: Akademie-Verlag, 1989.zbMATHGoogle Scholar
  30. [83]
    Habel, C.: Logische Systeme und Repräsentationsprobleme. In: B. Neumann (ed): GWAI-83. 7th German Workshop on Artificial Intelligence. Berlin: Springer-Verlag, 1983, pp.118–142.Google Scholar
  31. [86]
    Habel, C.: Prinzipien der Referentialität: Untersuchungen zur propositionalen Repräsentation von Wissen. Berlin: Springer-Verlag, 1986.zbMATHGoogle Scholar
  32. [86]
    Halpern, J.Y.: Reasoning About Knowledge: An Overview. In: J.Y. Halpern (ed): Theoretical Aspects of Reasoning About Knowledge: Proceedings of the 1986 Conference. Los Altos/Cal.: Morgan Kaufmann, 1986, pp.1–19.Google Scholar
  33. [77]
    Hayes, P.J.: In Defence of Logic. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1977, pp.559–565.Google Scholar
  34. [76]
    Hermes, H.: Einführung in die mathematische Logik. Stuttgart: B.G. Teubner, 1976.zbMATHGoogle Scholar
  35. [62]
    Hintikka, J.: Knowledge and Belief. An Introduction to the Logic of the Two Notions. Ithaca/NY: Cornell University Press, 1962.Google Scholar
  36. [86]
    Hintikka, J.: Reasoning About Knowledge in Philosophy: The Paradigm of Epistemic Logic. In: J.Y. Halpern (ed): Theoretical Aspects of Reasoning About Knowledge: Proceedings of the 1986 Conference. Los Altos/Cal.: Morgan Kaufmann, 1986, pp.63–80.Google Scholar
  37. [78]
    Hughes, G.E. / Cresswell, M.J.: Einführung in die Modallogik. Berlin: Walter de Gruyter, 1978.CrossRefGoogle Scholar
  38. [83]
    Israel, D.J.: The Role of Logic in Knowledge Representation. In: IEEE Computer, Vol.16, No.10, 1983, pp.37–41.CrossRefGoogle Scholar
  39. [89]
    Jackson, P. / Reichgelt, H.: A General Proof Method for Modal Predicate Logic. In: P. Jackson, H. Reichgelt, F. van Harmelen (eds): Logic-Based Knowledge Representation. Cambridge/Mass.: The MIT Press, 1989, pp.177–228.Google Scholar
  40. [89]
    Jackson, P. / Reichgelt, H. / Harmelen, F. van (eds): Logic-Based Knowledge Representation. Cambridge/Mass.: The MIT Press, 1989.Google Scholar
  41. [73]
    Kalinowski, G.: Einführung in die Normenlogik. Frankfurt: Athenäum, 1973.Google Scholar
  42. [80]
    Kalish, D. / Montague, R. / Mar, G.: Logic: Techniques of Formal Reasoning. New York: Harcourt Brace Jovanovich, 1980.Google Scholar
  43. [86]
    Konolige, K.: A Deduction Model of Belief. London: Pitman, 1986.zbMATHGoogle Scholar
  44. [88]
    Konolige, K.: Reasoning by Introspection. In: P. Maes, D. Nardi (eds): MetaLevel Architectures and Reflection. Amsterdam: North-Holland, 1988, pp.61–74.Google Scholar
  45. [79]
    Kowalski, R.: Logic for Problem Solving. Amsterdam: North-Holland, 1979.zbMATHGoogle Scholar
  46. [88]
    Kreiser, L. / Gottwald, S. / Stelzner, W. (eds): Nichtklassische Logik. Eine Einführung. Berlin: Akademie-Verlag, 1988.Google Scholar
  47. [84a]
    Levesque, H.J.: The Logic of Incomplete Knowledge Bases. In: M.L. Brodie, J. Mylopoulos, J.W. Schmidt (eds): On Conceptual Modelling. New York: Springer-Verlag, 1984, pp.165–189.CrossRefGoogle Scholar
  48. [84b]
    Levesque, H.J.: Foundations of a Functional Approach to Knowledge Representation. In: Artificial Intelligence, Vol.23, No.2, 1984, pp.155–212.zbMATHCrossRefGoogle Scholar
  49. [86a]
    Levesque, H.J.: Knowledge Representation and Reasoning. In: Annual Review of Computer Science, 1986, pp.255–287.Google Scholar
  50. [86b]
    Levesque, H.J.: Making Believers out of Computers. In: Artificial Intelligence, Vol.30, No.1, 1986, pp.81–108.CrossRefGoogle Scholar
  51. [84]
    Lloyd, J.W.: Foundations of Logic Programming. Berlin: Springer-Verlag, 1984.zbMATHCrossRefGoogle Scholar
  52. [78]
    Loveland, D.W.: Automated Theorem Proving: A Logical Basis. Amsterdam: North-Holland, 1978.zbMATHGoogle Scholar
  53. [88]
    Maier, D. / Warren, D.S.: Computing with Logic. Logic Programming with Prolog. Menlo Park/Cal.: Benjamin/Cummings, 1988.zbMATHGoogle Scholar
  54. [76]
    McArthur, J.: Tense Logic. Dordrecht: D. Reidel, 1976.zbMATHGoogle Scholar
  55. [80]
    McCarthy, J.: Circumscription: A Form of Non-Monotonic Reasoning. In: Artificial Intelligence, Vol.13, 1980, pp.27–39.MathSciNetzbMATHCrossRefGoogle Scholar
  56. [86]
    McCarthy, J.: Applications of Circumscription to Formalizing Common-Sense Knowledge. In: Artificial Intelligence, Vol.28, No.1, 1986, pp.89–116.MathSciNetCrossRefGoogle Scholar
  57. [82]
    McDermott, D.: A Temporal Logic for Reasoning about Processes and Plans. In: Cognitive Science, Vol.6, 1982, pp.101–155.CrossRefGoogle Scholar
  58. [80]
    McDermott, D. / Doyle, J.: Non-Monotonic Logic I. In: Artificial Intelligence, Vol.13, 1980, pp.41–72.MathSciNetzbMATHCrossRefGoogle Scholar
  59. [87]
    Mendelson, E.: Introduction to Mathematical Logic. Third Edition. Pacific Grove/Cal.: Wadsworth & Brooks, 1987.CrossRefGoogle Scholar
  60. [88]
    Minker, J. (ed): Foundations of Deductive Databases and Logic Programming. Los Altos/Cal.: Morgan Kaufmann, 1988.Google Scholar
  61. [82]
    Moore, R.C.: The Role of Logic in Knowledge Representation and Commonsense Reasoning. In: Proc. National Conf. on Artificial Intelligence, 1982, pp.428–433. (auch in (Brachman/Levesque 85))Google Scholar
  62. [85]
    Moore, R.C.: A Formal Theory of Knowledge and Action. In: J.R. Hobbs, R.C. Moore (eds): Formal Theories of the Commonsense World. Norwood/NJ: Ablex, 1985, pp.319–358.Google Scholar
  63. [88]
    Moore, R.C.: Autoepistemic Logic. In: Ph. Smets, A. Mamdani, D. Dubois, H. Prade (eds): Non-Standard Logics for Automated Reasoning. London: Academic Press, 1988, pp.105–136.Google Scholar
  64. [89]
    Patel-Schneider, P.F.: A Four-Valued Semantics for Terminological Logics. In: Artificial Intelligence, Vol.38, No.3, 1989, pp.319–351.MathSciNetzbMATHCrossRefGoogle Scholar
  65. [88]
    Pavelin, C.: Logic in Knowledge Representation. In: G.A. Ringland, D.A. Duce (eds): Approaches to Knowledge Representation: An Introduction. Letchworth/England: Research Studies Press, 1988, pp.13–43.Google Scholar
  66. [88]
    Ramsay, A.: Formal Methods in Artificial Intelligence. Cambridge: Cambridge University Press, 1988.zbMATHGoogle Scholar
  67. [89]
    Reichgelt, H.: A Comparison of First Order and Modal Logics of Time. In: P. Jackson, H. Reichgelt, F. van Harmelen (eds): Logic-Based Knowledge Representation. Cambridge/Mass.: The MIT Press, 1989, pp.143–176.Google Scholar
  68. [88]
    Reinfrank, M.: Reason Maintenance Systems. In: H. Stoyan (ed): Begründungsverwaltung. Beiträge zu einem Workshop über Reason Maintenance, Berlin, Oktober 1986. Berlin: Springer-Verlag, 1988, pp.1–26.Google Scholar
  69. [89]
    Reinfrank, M.: Formeln und Modelle: Wissensrepräsentation mit Logik. In: Informationstechnik it, Vol.31, No.2, 1989, pp.102–112.Google Scholar
  70. [78]
    Reiter, R.: On Closed World Data Bases. In: H. Gallaire, J. Minker (eds): Logic and Data Bases. New York: Plenum Press, 1978, pp.55–76.CrossRefGoogle Scholar
  71. [80]
    Reiter, R.: A Logic for Default Reasoning. In: Artificial Intelligence, Vol.13, 1980, pp.81–132.MathSciNetzbMATHCrossRefGoogle Scholar
  72. [71]
    Rescher, J. / Urquhart, A.: Temporal Logic. Wien: Springer-Verlag, 1971.zbMATHCrossRefGoogle Scholar
  73. [89]
    Richter, M.M.: Prinzipien der Künstlichen Intelligenz. Stuttgart: B.G. Teubner, 1989.zbMATHGoogle Scholar
  74. [65]
    Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle. In: Journal of the ACM, Vol.12, No.1, 1965, pp.23–41.zbMATHCrossRefGoogle Scholar
  75. [87]
    Rollinger, C.-R. / Studer, R. / Uszkoreit, H. / Wachsmuth, I.: Textunderstanding in LILOG — Sorts and Reference Objects. In: W. Brauer, W. Wahlster (eds): Wissensbasierte Systeme. 2. Internationaler GI-Kongreß. Berlin: Springer-Verlag, 1987, pp.246–259.Google Scholar
  76. [59]
    Scholz, H.: Abriß der Geschichte der Logik. Freiburg: Verlag Karl Alber, 1959.Google Scholar
  77. [89]
    Schöning, U.: Logik für Informatiker. Mannheim: BI Wissenschaftsverlag, 1989.Google Scholar
  78. [87]
    Shoham, Y.: Temporal Logics in AI: Semantical and Ontological Considerations. In: Artificial Intelligence, Vol.33, 1987, pp.89–104.MathSciNetzbMATHCrossRefGoogle Scholar
  79. [88]
    Smets, Ph. / Mamdani, A. / Dubois, D. / Prade, H. (eds): Non-Standard Logics for Automated Reasoning. London: Academic Press, 1988.zbMATHGoogle Scholar
  80. [84]
    Turner, R.: Logics for Artificial Intelligence. Chichester: Ellis Horwood, 1984.Google Scholar
  81. [88]
    Welham, B.: Declaratively Programmable Interpreters and Meta-Level Inference. In: P. Maes, D. Nardi (eds): Meta-Level Architectures and Reflection. Amsterdam: North-Holland, 1988, pp.287–299.Google Scholar
  82. [88]
    Wos, L.: Automated Reasoning: 33 Basic Research Problems. Englewood Cliffs/NJ: Prentice-Hall, 1988.Google Scholar
  83. [84]
    Wos, L. / Overbeek, R. / Lusk, E. / Boyle, F.: Automated Reasoning — Introduction and Applications. Englewood Cliffs/NJ: Prentice-Hall, 1984.zbMATHGoogle Scholar
  84. [77]
    Wright, G.H. von: Handlung, Norm und Intention. Untersuchungen zur deontischen Logik. Berlin: Walter de Gruyter, 1977.CrossRefGoogle Scholar
  85. [87]
    Zadeh, L.A.: Commonsense and Fuzzy Logic. In: N. Cercone, G. McCalla (eds): The Knowledge Frontier. Essays in the Representation of Knowledge. New York: Springer-Verlag, 1987, pp.103–136.Google Scholar
  86. [88]
    Zadeh, L.A.: Fuzzy Logic. In: IEEE Computer, Vol.21, No.4, 1988, pp.83–93.CrossRefGoogle Scholar

Literatur zu Kapitel 2.3: Produktionsregeln

  1. [85]
    Brownston, L. / Farrell, R. / Kant, E. / Martin, N.: Programming Expert Systems in OPS5. An Introduction to Rule-Based Programming. Reading/Mass.: AddisonWesley, 1985.Google Scholar
  2. [84]
    Buchanan, B.G. / Shortliffe, E.H. (eds): Rule-Based Expert Systems. The MYCIN Experiments of the Stanford Heuristic Programming Project. Reading/Mass.: Addison-Wesley, 1984.Google Scholar
  3. [89]
    Christaller, Th. / Primio, F. di / Voss, A. (eds): Die KI-Werkbank BABYLON. Bonn: Addison-Wesley, 1989.Google Scholar
  4. [80]
    Davis, R.: Meta-Rules: Reasoning about Control. In: Artificial Intelligence, Vol.15, 1980, pp.179–222.CrossRefGoogle Scholar
  5. [77]
    Davis, R. / King, J.: An Overview of Production Systems. In: E.W. Elcock, D. Michie (eds): Machine Intelligence 8. Chichester: Ellis Horwood, 1977, pp.300–332.Google Scholar
  6. [85]
    Fikes, R. / Kehler, T.: The Role of Frame-Based Representation in Reasoning. In: Communications of the ACM, Vol.28, No.9, 1985, pp.904–920.CrossRefGoogle Scholar
  7. [82]
    Forgy, C.L.: Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem. In: Artificial Intelligence, Vol.19, 1982, pp.17–37.CrossRefGoogle Scholar
  8. [82]
    Georgeff, M.P.: Procedural Control in Production Systems. In: Artificial Intelligence, Vol.18, 1982, pp.175–201.CrossRefGoogle Scholar
  9. [78]
    Hayes-Roth, F.: The Role of Partial and Best Matches in Knowledge Systems. In: D.A. Waterman, F. Hayes-Roth (eds): Pattern-Directed Inference Systems. New York: Academic Press, 1978, pp.557–574.Google Scholar
  10. [87]
    Krickhahn, R. / Radig, B.: Die Wissensrepräsentationssprache OPS5. Sprachbeschreibung und Einführung in die regelorientierte Programmierung. Braunschweig: Vieweg, 1987.zbMATHGoogle Scholar
  11. [54]
    Markov, A.A.: Theory of Algorithms. Moscow: Academy of Sciences of the USSR, 1954.Google Scholar
  12. [78]
    McDermott, J. / Forgy, C.: Production System Conflict Resolution Strategies. In: D.A. Waterman, F. Hayes-Roth (eds): Pattern-Directed Inference Systems. New York: Academic Press, 1978, pp.177–199.Google Scholar
  13. [78]
    McDermott, J. / Newell, A. / Moore, J.: The Efficiency of Certain Production System Implementations. In: D.A. Waterman, F. Hayes-Roth (eds): Pattern-Directed Inference Systems. New York: Academic Press, 1978, pp.155–176.Google Scholar
  14. [73]
    Moran, T.P.: The Symbolic Nature of Visual Imagery. In: Proc. Int. Joint Conf. on Artificial Intelligence, 1973, pp.472–477.Google Scholar
  15. [87]
    Neches, R. / Langley, P. / Klahr, D.: Learning, Development, and Production Systems. In: D. Klahr, P. Langley, R. Neches (eds): Production System Models of Learning and Development. Cambridge/Mass.: The MIT Press, 1987, pp.1–53.Google Scholar
  16. [72]
    Newell, A. / Simon, H.A.: Human Problem Solving. Englewood Cliffs/NJ: Prentice-Hall, 1972.Google Scholar
  17. [87]
    Niemann, H. / Bunke, H.: Künstliche Intelligenz in Bild- und Sprachanalyse. Stuttgart: B.G. Teubner, 1987.Google Scholar
  18. [77]
    Peterson, J.L.: Petri Nets. In: ACM Computing Surveys, Vol.9, No.3, 1977, pp.223–252.zbMATHCrossRefGoogle Scholar
  19. [43]
    Post, E.L.: Formal Reductions of the General Combinatorial Decision Problem. In: American Journal of Mathematics, Vol.65, 1943, pp.197–215.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [88]
    Puppe, F.: Einführung in Expertensysteme. Berlin: Springer-Verlag, 1988.zbMATHGoogle Scholar
  21. [78]
    Salomaa, A.K.: Formale Sprachen. Berlin: Springer-Verlag, 1978.zbMATHCrossRefGoogle Scholar
  22. [86]
    Silver, B.: Meta-Level Inference. Representing and Learning Control Information in Artificial Intelligence. Amsterdam: North-Holland, 1986.zbMATHGoogle Scholar
  23. [86]
    Sterling, L. / Shapiro, E.: The Art of Prolog. Cambridge/Mass.: The MIT Press, 1986.zbMATHGoogle Scholar
  24. [78]
    Zisman, M.D.: Use of Production Systems for Modeling Asynchronous, Concurrent Processes. In: D.A. Waterman, F. Hayes-Roth (eds): Pattern-Directed Inference Systems. New York: Academic Press, 1978, pp.53–68.Google Scholar

Literatur zu Kapitel 2.4: Analoge Repräsentation

  1. [85]
    Brachman, R.J. / Levesque, H.J. (eds): Readings in Knowledge Representation. Los Altos/Cal.: Morgan Kaufmann, 1985.zbMATHGoogle Scholar
  2. [88]
    Conway, T. / Wilson, M.: Psychological Studies of Knowledge Representation. In: G.A. Ringland, D.A. Duce (eds): Approaches to Knowledge Representation: An Introduction. Letchworth/England: Research Studies Press, 1988, pp.117–160.Google Scholar
  3. [86]
    Davis, E.: Representing and Acquiring Geographic Knowledge. London: Pitman, 1986.Google Scholar
  4. [73]
    Eastman, C.M.: Automated Space Planning. In: Artificial Intelligence, Vol.4, 1973, pp.41–64.CrossRefGoogle Scholar
  5. [80]
    Funt, B.V.: Problem-Solving with Diagrammatic Representations. In: Artificial Intelligence, Vol.13, 1980, pp.201–230. (auch in (Brachman/Levesque 85))CrossRefGoogle Scholar
  6. [89]
    Gardin, F. / Meltzer, B.: Analogical Representations of Naive Physics. In: Artificial Intelligence, Vol.38, No.2, 1989, pp.139–159.CrossRefGoogle Scholar
  7. [63]
    Gelernter, H.: Realization of a Geometry-Theorem Proving Machine. In: E.A. Feigenbaum, J. Feldman (eds): Computers and Thought. New York: McGraw-Hill, 1963, pp.134–152.Google Scholar
  8. [88]
    Habel, C.: Prozedurale Aspekte der Wegplanung und Wegbeschreibung. In: H. Schnelle, G. Rickheit (eds): Sprache in Mensch und Computer. Opladen: Westdeutscher Verlag, 1988, pp.107–133.Google Scholar
  9. [74]
    Hayes, P.J.: Some Problems and Non-Problems in Representation Theory. In: Proc. AISB Summer Conference, University of Sussex, 1974, pp.63–79. (auch in (Brachman/Levesque 85))Google Scholar
  10. [80]
    Kosslyn, S.M.: Image and Mind. Cambridge/Mass.: Harvard University Press, 1980.Google Scholar
  11. [87]
    Mohnhaupt, M.: On Modelling Events with an ‘Analogical’ Representation. In: K. Mork (ed): GWAI-87. 11th German Workshop on Artificial Intelligence. Berlin: Springer-Verlag, 1987, pp.31–40.Google Scholar
  12. [81]
    Pylyshyn, Z.: The Imagery Debate: Analog Media versus Tacit Knowledge. In: N. Block (ed): Imagery. Cambridge/Mass.: The MIT Press, 1981, pp.151–206.Google Scholar
  13. [84]
    Pylyshyn, Z.W.: Computation and Cognition. Toward a Foundation for Cognitive Science. Cambridge/Mass.: The MIT Press, 1984.Google Scholar
  14. [87]
    Pylyshyn, Z.W. (ed): The Robot’s Dilemma: The Frame Problem in Artificial Intelligence. Norwood/NJ: Ablex, 1987.Google Scholar
  15. [87]
    Shoham, Y.: What is the Frame Problem? In: F.M. Brown (ed): The Frame Problem in Artificial Intelligence. Proceedings of the 1987 Workshop. Los Altos/Cal.: Morgan Kaufmann, 1987, pp.5–21.Google Scholar
  16. [75]
    Sloman, A.: Afterthoughts on Analogical Representations. In: Proc. Conf. on Theoretical Issues in Natural Language Processing, Cambridge/Mass., 1975, pp.164–168. (auch in (Brachman/Levesque 85))Google Scholar
  17. [88]
    Steiner, G.: Analoge Repräsentationen. In: H. Mandl, H. Spada (eds): Wissenspsychologie. München: Psychologie Verlags Union, 1988, pp.99–119.Google Scholar

Copyright information

© B. G. Teubner Stuttgart 1991

Authors and Affiliations

  1. 1.Universität KonstanzDeutschland

Personalised recommendations