Skip to main content

Kupferhaltige Proteine: Die Alternative zu biologischem Eisen

  • Chapter
Bioanorganische Chemie

Part of the book series: Teubner Studienbücher Chemie ((TSBC))

  • 3744 Accesses

Zusammenfassung

Kupfer- und Eisen-enthaltende Proteine besitzen häufig vergleichbare Funktionalität (Tab. 10.1); hingewiesen wurde bereits auf die Entsprechung der reversibel O2-bindenden Proteine Hämerythrin (Fe, Kap. 5.3) und Hämocyanin (Cu, s. Kap. 10.2). Beide Metalle treten weiterhin in Elektronentransfer-Proteinen für die Photosynthese und Atmung sowie beim Metabolismus des Sauerstoffs, z.B. in Oxidasen/Oxygenasen, und bei der Beseitigung seiner zeltschädigenden Reduktions-Zwischenprodukte auf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • W. Kaim, J. Rall, Angew. Chem. 108 (1996) 47: Kupfer-ein “modernes” Bioelement E.-I. OCHIAI, J. Chem. Educ. 63 (1986) 942: Iron versus copper

    Google Scholar 

  • M. Pascaly, I. Jolk, B. Krebs, Chem. Unserer Zeit 33 (1999) 334: Kupfer-Die biochemische Bedeutung eines Metalls

    Google Scholar 

  • M.C. Linder, C.A. Goode: Biochemistry of Copper,Plenum Press, New York, 1991 K. DAVIES, Nature (London) 361 (1993) 98: Cloning the MENKES disease gene

    Google Scholar 

  • H.-X. Deng et al., Science 261 (1993) 1047: Amyotrophic lateral sclerosis and structural defects in CuZn superoxide dismutase

    Google Scholar 

  • D.R. Rosen et al., Nature (London) 362 (1993) 59: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis

    Google Scholar 

  • C.F. Mills, Chem. Br. 15 (1979) 512: Trace element deficiency and excess in animals

    Google Scholar 

  • A. Müller, E. Diemann, R. Jostes, H. Bogge, Angew. Chem. 93 (1981) 957: Thioanionen der Übergangsmetalle: Eigenschaften und Bedeutung für Komplexchemie und Bioanorganische Chemie

    Google Scholar 

  • C. Burns, E. Aronoff-Spencer, G. Legname, S.B. Prusiner, W.E. Antholine, G.J. Gerfen, J. Peisach, G.L. Millhauser, Biochemistry 42 (2003) 6794: Copper coordination in the full-length, recombinant prion protein

    Google Scholar 

  • E.I. Solomon, M.J. Baldwin, M.D. Lowery, Chem. Rev. 92 (1992) 521: Electronic structures of active sites in copper proteins: Contributions to reactivity

    Google Scholar 

  • M. Symons:Chemical and Biochemical Aspects of Electron-Spin Resonance Spectroscopyvan Nostrand Reinhold, New York, 1978

    Google Scholar 

  • M.M. Werst, C.E. Davoust, B.M. Hoffman, J. Am. Chem. Soc. 113 (1991) 1533: Ligand spin densities in blue copper proteins by Q-band-JH and 14 N ENDOR spectrosopy

    Google Scholar 

  • J.M. Guss, H.D. Bartunik, H.C. Freeman, Acta Cryst. 848 (1992) 790: Acuracy and precision in protein structure analysis: Restrained least-squares refinement of the structure of poplar plastocyanin at 1.33 A resolution

    Google Scholar 

  • G.E. Norris, B.F. Anderson, E.N. Baker, J. Am. Chem. Soc. 108 (1986) 2784: Blue copper proteins. The copper site in azurin from Alcaligenes denitrificans

    Google Scholar 

  • W.E.B. Shepard, B.F. Anderson, D.A. Lewandoski, G.E. Norris, D.N. Baker, J. Am. Chem. Soc. 112 (1990) 7817: Copper coordination geometry in azurin undergoes minimal change on reduction of copper(11) to copper(!)

    Google Scholar 

  • B.G. Malmstrom, Eur. J. Biochem. 23 (1994) 711: Rack-induced bonding in blue-copper proteins

    Google Scholar 

  • P.K. Bharadwaj, J.A. Potenza, H.J. Schugar, J. Am. Chem. Soc. 108 (1986) 1351: Characterization of fdimethyl-N,N’-ethylenebis(L-cysteinato)(2)-S,S7copper(ll), Cu(SCH 2 CH(CQ 2 CN3)NNCH 2 ) 2 , a stable Cu(ll)-aliphatic dithiolate

    Google Scholar 

  • M.L. Brader, M.F. Dunn, J. Am. Chem. Soc. 112 (1990) 4585: Insulin stabilizes copper(11)-ihiolate ligation that models blue copper proteins

    Google Scholar 

  • A.S. Klemens, D.R. Mcmlelin, H.T. Tsang, J.E. Penner-Hahn, J. Am. Chem. Soc. 111 (1989) 6398: Structural characterization of mercury-substituted copper proteins. Results from X-ray absorption spectroscopy

    Google Scholar 

  • K.D. Karlin, Y. Gultneh, Prog. Inorg. Chem. (1989) 219: Binding and Activation of molecular oxygen by copper complexes

    Google Scholar 

  • K.M. Merz, R. Hoffmann, Inorg. Chem. 27 (1988) 2120: d10- d10 Interactions: Multi-nuclear copper(!) complexes

    Google Scholar 

  • K.A. Magnus, H. Ton-That, J.E. Carpenter, Chem. Rev. 94 (1994) 727: Recent structural work on the oxygen transport protein hemocyanin

    Google Scholar 

  • N. Kitajima, Y. Moro-Oka in (bb): Copper-dioxygen complexes. Inorganic and bioinorganic perspectives

    Google Scholar 

  • K.D. Karlin, Z. Tyeklar, A. Farooq, M.S. Haka, P. Ghosh, R.W. Cruse, Y. Gultneh, J.C. Hayes, P.J. Toscano, J. Zubieta, Inorg. Chem. 31 (1992) 1436: Dioxygen-copper reactivity and functional modeling of hemocyanins. Reversible binding of 0 2 and CO to dicopper(I) complexes [Cu’ 2 (L)12 + (L = dinucleating ligand) and the structure of a bis(carbonyl) adduct, [Cu’ 2 (L)(CO)212+

    Google Scholar 

  • M.J. Baldwin, D.E. Root, J.E. Pate, K. Fujisawa, N. Kitajima, E.I. Solomon, J. Am. Chem. Soc. 114 (1992) 10421: Spectroscopic studies of side-on peroxide-bridged binuclear copper(ll) model complexes of relevance to oxyhemocyanin and oxytyrosinase

    Google Scholar 

  • C.A. Reed in K.D. Karlin, J. Zubieta (Hrsg.): Biological and Inorganic Copper Chemistry, Vol. I,Adenine Press, Guilderland, 1985, S. 61: Hemocyanin cooperativity: A copper coordination chemistry perspective

    Google Scholar 

  • M.G. Peter, Angew. Chem. 101 (1989) 572: Chemische Modifikation von Biopolymeren durch Chinone and Chinonmethide

    Google Scholar 

  • M.G. Peter, H. Forster, Angew. Chem. 101 (1986) 753: Zur Struktur von Eumelaninen

    Google Scholar 

  • E.W. Ainscough, A.M. Brodie, A.L. Wallace, J. Chem. Ed. 69 (1992) 315: Ethylene-An unusual plant hormone

    Google Scholar 

  • M.S. Nasir, B.I. Cohen, K.D. Karlin, J. Am. Chem. Soc. 114 (1992) 2482: Mechanism of aromatic hydroxylation in copper monooxygenase model systems. 1,2-Methyl migrations and the NIH shift in copper chemistry

    Google Scholar 

  • B.J. Reedy, N.J. Blackburn, J. Am. Chem. Soc. 116 (1994) 1924: Preparation and characterization of half-apo dopamine-6 hydroxylase by selective removal of Cu

    Google Scholar 

  • A. Messerschmidt, H. Luecke, R. Huber, J. Mol. Biol. 230 (1993) 997: X-ray structures and mechanistic implications of three functional derivatives of ascorbate oxidase from zucchini

    Google Scholar 

  • J.L. Cole, P.A. Clark, E.I. Solomon, J. Am. Chem. Soc. 112 (1990) 9548: Spectroscopic and chemical studies of the laccase trinuclear copper active site: Geometric and electronic structure

    Google Scholar 

  • R. Huber, Angew. Chem. 101 (1989) 849: Eine strukturelle Grundlage für die Übertragung von Lichtenergie and Elektronen in der Biologie (Nobel-Vortrag)

    Google Scholar 

  • O. Farver, M. GOLDBERG, I. PECHT, Eur. J. Biochem. 104 (1980) 71: A circular dichroism study of the reactions of thus laccase with oxygen

    Google Scholar 

  • P. Knowles, N. Ito in (f), Vol. 2 (1993), S. 207: Galactose oxidase

    Google Scholar 

  • N. Ito, S.E.V. Phillips, C. Stevens, Z.B. Ogel, M.J. Mcpherson, J.N. Keen, K.D.S. Yadav, P.F. Knowles, Faraday Discuss. 93 (1992) 75: Three dimensional structure of galactose oxidase: An enzyme with a built-in secondary cofactor

    Google Scholar 

  • J.W. Whittaker in (d), Vol. 30 (1994), S. 315: The free radical-coupled copper active site of galactose oxidase

    Google Scholar 

  • W.S. McintireFASEB J. 8 (1994) 513: Quinoproteins

    Google Scholar 

  • D.M. Dooley, M.A. Mcguirl, D.E. Brown, P.N. Turowski, W.S. Mcintire, P.F. Knowles, Nature (London) 349 (1991) 262: A Cu(1)-semiquinone state in substrate-reduced amine oxidases

    Google Scholar 

  • W.G. Zumft, A. Dreusch, S. Löchelt, H. Cuypers, B. Friedrich, B. Schneider, Eur. J. Biochem. 208 (1992) 31: Derived amino acid sequences of the nosZ gene (respiratory N 2 0 reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues

    Google Scholar 

  • P. Lappalainen, M. Saraste, Biochim. Biophys Acta 1187 (1994) 222: The binuclear Cu, centre of cytochrome oxidase

    Google Scholar 

  • W.E. Antholine, D.H.W. Kastrau, G.C.M. Steffens, G.Buse, W.G. Zumft, P.M.H. Kroneck, Eur, J. Biochem. 209 (1992) 875: A comparative EPR investigation of the multicopper proteins nitrous-oxide reductase and cytochrome c oxidase

    Google Scholar 

  • P.M.H. Kroneck, J. Beuerle, W. Schumacher in (d), Vol. 28 (1992), S. 455: Metaldependent conversion of inorganic nitrogen and sulfur compounds

    Google Scholar 

  • T. Brittain, R. Blackmore, C. Greenwood, A.J. Thomson, Eur. J. Biochem. 209 (1992) 793: Bacterial nitrite-reducing enzymes

    Google Scholar 

  • S.M. Carrier, C.E. Ruggiero, W.B. Tolman, J. Am. Chem. Soc. 114 (1992) 4407: Synthesis and structural characterization of a mononuclear copper nitrosyl complex

    Google Scholar 

  • B.A. Averill, Angew. Chem. 106 (1994) 2145: Neuartige Nitrosylkupfer-Komplexe: Beiträge zum Verständnis der dissimilatorischen kupferhaltigen Nitrit-Reduktasen

    Google Scholar 

  • J.W.Godden, S. Turley, D.C. Teller, E.T. Adman, M.Y. Liu, W.J. Payne, J. Legall, Science 253 (1991) 438: The 2.3A X-ray structure of nitrite reductase from Achromobacter cycloclastes

    Google Scholar 

  • H.Beinert in (j), S. 35: From indophenol oxidase and atmungsferment to proton pumping cytochrome oxidase aa 3 Cu A Cu B (Cu c ?)ZnMg

    Google Scholar 

  • G. Buse, Naturwiss. Rundschau 39 (1986) 518: Die Cytochrome der Atmungskette

    Google Scholar 

  • G.T. Babcock, M. Wikstrom, Nature (London) 356 (1992) 301: Oxygen activation and the conservation of energy in cell respiration

    Google Scholar 

  • G.C.M. Steffens, T. Soulimane, G. Wolff, G. Buse, Eur. J. Biochem. 213 (1993) 1149: Stoichiometry and redox behaviour of metals in cytochrome-c oxidase

    Google Scholar 

  • C. Varotsis, Y. Zhang, E.H. Appelman, G.T. Babcock, Proc. Natl. Acad. Sci. USA 90 (1993) 237: Resolution of the reaction sequence during the reduction of 02 by cytochrome oxidase

    Google Scholar 

  • N.J. Blackburn, M.E. Barr, W.H. Woodruff, J. Van Der Oost, S. DE Vries, Biochemistry 33 (1994) 10401: Metal-metal bonding in biology: EXAFS evidence for a 2.5 A copper-copper bond in the CuA center of cytochrome oxidase

    Google Scholar 

  • I.Fridovich, J. Biol. Chem. 264 (1989) 7761: Superoxide dismutases A.E.G. CASS in (o), Part 1,S. 121: Superoxide dismutases

    Google Scholar 

  • W.C. Stallings, K.A. Pattridge, R.K. Strong, M.L. Ludwig,J. Biol. Chem. 260 (1985) 16424: The structure of manganese superoxide dismutase from Therms thermophilus HB8 at 2.4-A resolution

    Google Scholar 

  • J.A. Tainer, E.D. Getzoff, J.S. Richardson, D.C. Richardson, Nature (London) 306 (1983) 284: Structure and mechanism of copper,zinc superoxide dismutase

    Google Scholar 

  • E.D. Getzoff, D.E. Cabelli, C.L. Fisher, H.E. Parge, M.S. Viezzoli, L. Banci, R.A. Hallewell, Nature (London) 358 (1992) 347: Faster superoxide dismutase mutants designed by enhancing electrostatic guidance

    Google Scholar 

  • I. Bertini, L. Banci, M. Piccioli, C. Luchinat, Coord. Chem. Rev. 100 (1990) 67: Spectroscopic studies on Cu2Zn2SOD: A continuous advancement on investigation tools

    Google Scholar 

  • A.W.Segal, A. Abo, Trends Biochem. Sci. 18 (1993) 43: The biochemical basis of the NADPH oxidase of phagocytes

    Google Scholar 

  • J.R.J. Sorenson, Chem. Br. 25 (1989) 169: Copper complexes as “radiation recovery” agents

    Google Scholar 

  • W.C. Orr, R.S. Sohal, Science 263 (1994) 1128: Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Kaim, W., Schwederski, B. (2005). Kupferhaltige Proteine: Die Alternative zu biologischem Eisen. In: Bioanorganische Chemie. Teubner Studienbücher Chemie. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-01605-2_10

Download citation

Publish with us

Policies and ethics