Skip to main content

Metrics in Soccer

  • Chapter
  • First Online:
Sports Technology
  • 209 Accesses

Abstract

This chapter focuses on simple (e.g., number of sprints, meters run, number of passes) and more complex (e.g., space control, pressing parameters) key performance indicators (KPIs) or metrics. These physiological or tactical indicators try to reflect the performance of athletes in complex environments and in real competition conditions and reflect in different dimensions the complex reality of the sports game or sports performance. Based on these results, performance relevant parameters for training and competition optimization can be analyzed. In the future, experimental approaches can help to test theories and interdisciplinary questions from sports psychology, training science and sports informatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Castellano, J., Alvarez-Pastor, D., & Bradley, P. S. (2014). Evaluation of research using computerised tracking systems (Amisco and Prozone) to analyse physical performance in elite soccer: A systematic review. Sports Medicine, 44(5), 701–712.

    Article  PubMed  Google Scholar 

  • Drust, B., Atkinson, G., & Reilly, T. (2007). Future perspectives in the evaluation of the physiological demands of soccer. Sports Medicine, 37(9), 783–805.

    Article  PubMed  Google Scholar 

  • Garnica-Caparrós, M., & Memmert, D. (2021). Understanding gender differences in professional European football through machine learning interpretability and match actions data. Scientific Reports, 11(1), 1–14.

    Article  Google Scholar 

  • Guerrero-Calderón, B., Klemp, M., Morcillo, J. A., & Memmert, D. (2021). How does the workload applied during the training week and the contextual factors affect the physical responses of professional soccer players in the match? International Journal of Sports Science & Coaching, 16, 994–1003.

    Article  Google Scholar 

  • Klemp, M., Memmert, D., & Rein, R. (2022). The influence of running performance on scoring the first goal in a soccer match. International Journal of Sports Science & Coaching, 17(3), 558–567.

    Article  Google Scholar 

  • Low, B., Coutinho, D., Gonçalves, B., Rein, R., Memmert, D., & Sampaio, J. (2019). A systematic review of collective tactical behaviours in football using positional data. Sports Medicine, 50, 343–385.

    Article  Google Scholar 

  • Low, B., Schwab, S., Rein, R., & Memmert, D. (2022a). The porous high-press? An experimental approach investigating tactical behaviours from two pressing strategies in football. Journal of Sports Sciences, 39, 2199–2210.

    Article  Google Scholar 

  • Low, B., Schwab, S., Rein, R., & Memmert, D. (2022b). Defending in 4-4-2 or 5-3-2 formation? Small differences in footballers’ collective tactical behaviours. Journal of Sports Sciences, 1–13.

    Google Scholar 

  • Memmert, D. (Ed.). (2022). Match Analysis. Springer.

    Google Scholar 

  • Memmert, D. (Ed.). (2023). Handbook Computer Science in Sport. Springer.

    Google Scholar 

  • Memmert, D., & Raabe, D. (2023). Data Analytics in Football. Positional Data Collection, Modelling and Analysis (3. Edition). Springer.

    Google Scholar 

  • Memmert, D., Raabe, D., Knyazev, A., Franzen, A., Zekas, L., Rein, R., Perl, J., & Weber, H. (2016). Big Data im Profi-Fußball—analyse von Positionsdaten der Fußball-Bundesliga mit neuen innovativen key performance Indikatoren. Leistungssport, 46, 21–26.

    Google Scholar 

  • Memmert, D., Lemmink, K., & Sampaio, J. (2017). Current approaches to tactical performance analyses in soccer using position data. Sports Medicine, 47, 1–10.

    Article  PubMed  Google Scholar 

  • Memmert, D., Raabe, D., Schwab, S., & Rein, R. (2019). A tactical comparison of the 4-2-3-1 and 3-5-2 formation in soccer: A theory-oriented, experimental approach based on positional data in an 11 vs. 11 game set-up. PLoS One, 14(1), e0210191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Memmert, D., Klemp, M., Caparrós, M. G., & Imkamp, J. (2020). Frauen vs. Männer—Taktische Leistungsfähigkeit im Fußball. Impulse, 25, 36–44.

    Google Scholar 

  • Miguel, M., Oliveira, R., Loureiro, N., García-Rubio, J., & Ibáñez, S. J. (2021). Load measures in training/match monitoring in soccer: A systematic review. International Journal of Environmental Research and Public Health, 18(5), 2721.

    Article  PubMed  PubMed Central  Google Scholar 

  • Modric, T., Versic, S., Sekulic, D., & Liposek, S. (2019). Analysis of the association between running performance and game performance indicators in professional soccer players. International Journal of Environmental Research and Public Health, 16(20), 4032.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perl, J., Grunz, A., & Memmert, D. (2013). Tactics analysis in soccer—An advanced approach. International Journal of Computer Science in Sport, 12, 33–44.

    Google Scholar 

  • Polglaze, T., Dawson, B., & Peeling, P. (2016). Gold standard or fool’s gold? The efficacy of displacement variables as indicators of energy expenditure in team sports. Sports Medicine, 46, 657–670.

    Article  PubMed  Google Scholar 

  • Rein, R., & Memmert, D. (2016). Big data and tactical analysis in elite soccer: Future challenges and opportunities for sports science. Springerplus, 5, 1–13.

    Article  Google Scholar 

  • Rein, R., Perl, R., & Memmert, D. (2017). Maybe a tad early for a Grand Unified theory: Commentary on “Towards a Grand Unified Theory of sports performance” by Paul S. Glazier. Human Movement Science, 56, 173–175.

    Article  PubMed  Google Scholar 

  • Sarmento, H., Marcelino, R., Anguera, M. T., CampaniÇo, J., Matos, N., & LeitÃo, J. C. (2014). Match analysis in football: A systematic review. Journal of Sports Sciences, 32(20), 1831–1843.

    Article  PubMed  Google Scholar 

  • Schlenger, J., Wunderlich, F., Raabe, D., & Memmert, D. (2023). Systematic analysis of position-data-based key performance indicators. International Journal of Computer Science in Sport.

    Google Scholar 

  • Sweeting, A. J., Cormack, S. J., Morgan, S., & Aughey, R. J. (2017). When is a sprint a sprint? A review of the analysis of team-sport athlete activity profile. Frontiers in Physiology, 8, 432.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace, J. L., & Norton, K. I. (2014). Evolution of World Cup soccer final games 1966-2010: Game structure, speed and play patterns. Journal of Science Medicine in Sport, 17(2), 223–228. https://doi.org/10.1016/j.jsams.2013.03.016

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Memmert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Memmert, D. (2024). Metrics in Soccer. In: Memmert, D. (eds) Sports Technology. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-68703-1_21

Download citation

Publish with us

Policies and ethics