Skip to main content

An Efficient State Space Construction for a Class of Timed Automata

  • Chapter
  • First Online:
Transactions on Petri Nets and Other Models of Concurrency XVII

Part of the book series: Lecture Notes in Computer Science ((TOPNOC,volume 14150))

  • 119 Accesses

Abstract

In this paper we propose a timed abstraction, called acceleration, for the analysis of NCTAs, a class of networks of timed automata tailored to model systems composed out of non-deterministic cyclic agents updating shared variables. The abstraction is based on “maximal action zones”, easy to compute on the fly, which generally aggregate regions in a different way than classical zones do. The original and accelerated semantics are shown coherent in the sense that they both lead to the same untimed semantics, and satisfy the same class of positive reachability queries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that, since \(L_i\cap L_j=\emptyset \) when \(i\ne j\), \(T_i\cap T_j=\emptyset \) too, so that each location or transition belongs to a single agent, avoiding confusions in the model.

  2. 2.

    Operator X is irrelevant here since there is no true “next” state when time may evolve continuously.

  3. 3.

    Typically, it will be \((\mathbb {R},\sup )\) or \((\mathbb {R},\inf )\).

  4. 4.

    In particular, that means that \(g(s)\wedge g(s)=g(s)\) and \(\wedge g(S_1\cup S_2)=(\wedge g(S_1))\wedge (\wedge g(S_2))\) for any reachable state s and state sets \(S_1,S_2\).

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arcile, J.: Sources of the MAPTs models and exploration algorithms. https://forge.ibisc.univ-evry.fr/jarcile/MAPTs/. Accessed 11 Oct 2019

  3. Arcile, J.: Conception, modélisation et vérification formelle d’un système temps-réel d’agents coopératifs: application aux véhicules autonomes communicants. PhD thesis, Université Paris-Saclay, France; préparée à l’Université d’Evry-Val-d’Essonne: https://www.biblio.univ-evry.fr/theses/2019/2019SACLE029.pdf (2019)

  4. Arcile, J., Devillers, R., Klaudel, H.: VerifCar: a framework for modeling and model checking communicating autonomous vehicles. Auton. Agent. Multi-Agent Syst. 33(3), 353–381 (2019). https://doi.org/10.1007/s10458-019-09409-x

    Article  Google Scholar 

  5. Arcile, J., Devillers, R.R., Klaudel, H.: Dynamic exploration of multi-agent systems with periodic timed tasks. Fundam. Informaticae 175(1–4), 59–95 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arcile, J., Devillers, R., Klaudel, H.: Models for dynamic exploration of the state spaces of autonomous vehicles. In: Proceedings of the International Workshop on Petri Nets and Software Engineering co-located with 41st International Conference on Application and Theory of Petri Nets and Concurrency (PETRI NETS 2020), Paris, France, June 24, 2020 (due to COVID-19: virtual conference), pp. 29–48 (2020)

    Google Scholar 

  7. Behrmann, G., Bengtsson, J., David, A., Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL implementation secrets. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 3–22. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45739-9_1

    Chapter  Google Scholar 

  8. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in zone-based abstractions of timed automata. Int. J. Softw. Tools Technol. Transfer 8(3), 204–215 (2006). https://doi.org/10.1007/s10009-005-0190-0

    Article  MATH  Google Scholar 

  9. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2_3

    Chapter  Google Scholar 

  10. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (2001)

    Google Scholar 

  11. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  12. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool Kronos. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 208–219. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0020947

    Chapter  Google Scholar 

  13. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054180

    Chapter  Google Scholar 

  14. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52148-8_17

    Chapter  Google Scholar 

  15. Elliott, D., Keen, W., Miao, L.: Recent advances in connected and automated vehicles. J. Traffic Transp. Eng. (English Edition) 6(2), 109–131 (2019)

    Article  Google Scholar 

  16. Jamroga, W., Konikowska, B., Kurpiewski, D., Penczek, W.: Multi-valued verification of strategic ability. Fundam. Informaticae 175(1–4), 207–251 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moler, C.: Pentium division bug documents. MATLAB Central File Exchange (2021)

    Google Scholar 

  18. Pommereau, F.: ZINC: a compiler for “any language”-coloured Petri nets. IBISC, university of Evry/Paris-Saclay, Technical report (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Arcile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arcile, J., Devillers, R., Klaudel, H. (2024). An Efficient State Space Construction for a Class of Timed Automata. In: Koutny, M., Bergenthum, R., Ciardo, G. (eds) Transactions on Petri Nets and Other Models of Concurrency XVII. Lecture Notes in Computer Science(), vol 14150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-68191-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-68191-6_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-68190-9

  • Online ISBN: 978-3-662-68191-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics