Skip to main content

Die Grenzen der Ewigkeit: Anfang und Ende der Zeit

  • Chapter
  • First Online:
Grenzen der Wirklichkeit
  • 522 Accesses

Zusammenfassung

Wir begeben uns auf die Suche nach den Grenzen der Ewigkeit, nach dem Anfang und Ende der Zeit. War der Urknall der Beginn der Zeit, und wird sie irgendwann an ein Ende kommen?

Einst gebräuchliche Worte sind jetzt unverständliche Ausdrücke. […] Alles vergeht und wird bald zum Märchen und sinkt rasch in völlige Vergessenheit. (Mark Aurel: Selbstbetrachtungen, Viertes Buch, 33., z. B. unter https://www.gutzitiert.de/des_kaisers_marcus_aurelius_antonius_selbstbetrachtungen-mark_aurel-kapitel_5.html.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    U-238 bedeutet, dass dieses Uranisotop, wie man es auch nennt, in seinem Atomkern 238 Kernbausteine (Nukleonen) enthält, nämlich 92 Protonen (deshalb ist es das Element Uran) und 146 Neutronen. Das seltenere Uranisotop U-235 enthält dagegen 3 Neutronen weniger, aber genauso viele Protonen (sonst wäre es kein Uran). U-235 zerfällt gut 6-mal schneller als U-238, nämlich mit einer Halbwertszeit von 703,8 Mio. Jahren.

  2. 2.

    Die Lichtmenge, die von einem Stern auf der Erde ankommt, nimmt nämlich quadratisch mit wachsendem Abstand ab. Verdoppelt sich der Abstand, viertelt sich die Lichtmenge.

  3. 3.

    Ein Parsec (engl. „parallax second“) ist die Entfernung, aus der man den mittleren Abstand zwischen Erde und Sonne unter einem Winkel von einer Bogensekunde sieht; 1 Parsec entspricht 3,26 Lichtjahren und 1 Megaparsec sind 1 Mio. Parsec.

  4. 4.

    Wenn Sie sich für die mathematischen Details interessieren: Der Hubble-Parameter H ist gleich der Fluchtgeschwindigkeit v irgendeiner Galaxie, dividiert durch ihren Abstand d zu uns: H = v/d. Wegen des Hubble-Gesetzes ist es egal, welche Galaxie wir nehmen, solange sie nicht allzu nahe ist – der Quotient v/d ist nämlich bei allen Galaxien derselbe. Wenn nun die Fluchtgeschwindigkeit v der Galaxie schon immer unverändert war, dann ist ihr Abstand d zu uns einfach gleich dieser Geschwindigkeit v mal der Zeit t, die seit dem Zeitpunkt verstrichen ist, als der Abstand null war: d = v ∙ t. Das können wir in der Formel für H einsetzen und v wegkürzen: H = v/d = v/(v ∙ t) = 1/t. Der Hubble-Parameter ist also in diesem Beispiel anders als die Fluchtgeschwindigkeit nicht konstant, sondern er fällt umgekehrt proportional mit der Zeit t ab, die verstrichen ist, seit sich alle Galaxien in der Rückschau am selben Punkt trafen. Umgekehrt gibt sein Kehrwert diese Zeit an: t = 1/H.

  5. 5.

    Siehe mein Buch Mehr als nur schön: Wie Symmetrien unsere Naturgesetze formen, Springer (2020).

  6. 6.

    Das liegt daran, dass unser Raum 3-dimensional ist und dass die abstoßende Gravitation des Drucks für jede Raumdimension einmal gezählt werden muss.

  7. 7.

    Die Vorstellung des sich ausdehnenden Raums wird oft als „korrekter“ angesehen als das Bild der auseinanderfliegenden Galaxien. Aber auch letzteres Bild ist nützlich, wenn man den Begriff der Fluchtgeschwindigkeit geeignet definiert. Mehr dazu findet man beispielsweise in den Arbeiten von Markus Pössel im Literaturverzeichnis am Ende des Buchs.

  8. 8.

    Die sogenannte Dunkle Materie, auf die wir später noch zurückkommen werden, lassen wir hier zur Vereinfachung erst einmal weg.

  9. 9.

    Genau genommen muss man hier konkrete Berechnungen im Rahmen der Allgemeinen Relativitätstheorie anstellen, denn mit den anschaulichen Vorstellungen ist das oft so eine Sache. Einen absoluten Raum und eine absolute Zeit gibt es ja nicht, sodass Begriffe wie Abstand und Geschwindigkeit oft vieldeutig sind und eigentlich genauer spezifiziert werden müssen. Ich hoffe, das anschauliche Argument macht aber zumindest plausibel, worum es hier geht.

  10. 10.

    Wenn Sie Lust haben, ist hier ein kleines Rechenbeispiel zur Veranschaulichung: Stellen Sie sich vor, Sie könnten Dunkle Energie der Energiedichte ρ in einen Zylinder mit der Grundfläche A füllen, der einen beweglichen Kolben besitzt. Die Dunkle Energie im Zylinder besitzt einen negativen Druck p und zieht den Kolben mit der Kraft F = p∙A nach innen. Wenn Sie nun aber den Kolben festhalten und ein kleines Stück s aus dem Zylinder herausziehen, dann müssen sie gegen diesen Zug ankämpfen und die Arbeit W = F∙s aufwenden. Diese Arbeit erzeugt im Zylinder die Energiemenge E = F∙s = p∙A∙s = p∙V, wobei V = A∙s das Zusatzvolumen ist, das durch das Herausziehen des Kolbens neu hinzukommt. Dieses Zusatzvolumen kann mit der neu erzeugten Energie E gefüllt werden, was darin zu einer Energiedichte E/V = p führt (stellen sie dazu einfach die obige Formel E = p∙V nach p frei). Wenn nun der negative Druck betragsmäßig genau gleich der Dunklen Energiedichte ist (also p = ρ), dann wird auch das Zusatzvolumen mit derselben Energiedichte gefüllt, die die Dunkle Energie im Zylinder zuvor schon besaß: E/V = p = ρ. Das Herausziehen des Kolbens verdünnt die Dunkle Energie im Zylinder also nicht, denn diese wird durch die aufgewendete Arbeit genau im richtigen Maß nachgeliefert. Umgekehrt muss die Dunkle Energie einen negativen Druck vom Betrag der Energiedichte (p = ρ) haben, um bei der Expansion konstant bleiben zu können.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Resag .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Resag, J. (2023). Die Grenzen der Ewigkeit: Anfang und Ende der Zeit. In: Grenzen der Wirklichkeit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-67400-0_1

Download citation

Publish with us

Policies and ethics