Skip to main content

Nachhaltigkeitsperspektive

  • Chapter
  • First Online:
Handbuch Digital Farming

Zusammenfassung

In den letzten zwei Jahrzehnten ist das Bewusstsein für die Verbindung zwischen Ernährungssicherheit, nachhaltigen landwirtschaftlichen Standards und Praktiken, sowie digitaler Landwirtschaft gewachsen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Angers, D. A., & Eriksen-Hamel, N. S. (2008). Full-inversion tillage and organic carbon distribution in soil profiles: A meta-analysis. Soil Science Society of America Journal, 72, 1370–1374. https://doi.org/10.2136/sssaj2007.0342.

    Article  CAS  Google Scholar 

  2. Altieri, M. A., Nicholls, C. I., Henao, A., & Lana, M. A. (2015). Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development, 35, 869–890.

    Article  Google Scholar 

  3. Albrecht, E., Reinsch, T., Poyda, A., Taube, F., & Henning, C. (2017). Klimaschutz durch Wiedervernässung von Niedermoorböden: Wohlfahrtseffekte am Beispiel der Eider-Treene-Region in Schleswig-Holstein. Berichte über Landwirtschaft 95(3), ISSN 2196–5099.

    Google Scholar 

  4. Bruno, B., & Antle, J. (2020). Digital agriculture to design sustainable agricultural systems. https://doi.org/10.1038/s41893-020-0510-0. Zugegriffen: 13. März 2022.

  5. BASF SE. (2020). BASF, Boortmalt and SAI Platform collaborate for sustainable barley production. Pressemitteilung. https://www.basf.com/global/en/media/news-releases/2020/11/p-20-369.html. Zugegriffen: 13. März 2022.

  6. Bellamy, P., Loveland, P., Bradley, R., Lark, R., & Kirk, G. (2005). Carbon losses from all soils across England and Wales, 1978–2003. Nature, 437, 245–258. https://doi.org/10.1038/nature04038.

  7. Bockholt, K. (2020). 10 Cent mehr für regionales Lerchenbrot. https://www.agrarheute.com/pflanze/getreide/10-cent-mehr-fuer-regionales-lerchenbrot-imagegewinn-plus-600-euroha-567818. Zugegriffen: 13. März 2022.

  8. Baker, J. M., Ochsner, T. E., Venterea, R. T., & Griffis, T. J. (2007). Tillage and soil carbon sequestration – What do we really know? Agriculture, Ecosystems and Environment, 118, 1–5.

    Article  CAS  Google Scholar 

  9. Francesco Braga. (2015). The sustainable agriculture initiative platform: The first 10 years. Journal on Chain and Network Science, 1(-1), 1–12. https://www.wageningenacademic.com/doi/pdf/10.3920/JCNS2014.x015. Zugegriffen: 13. März 2022.

  10. Biernat, L., Taube, F., Vogeler, I., Reinsch, T., Kluß, C., & Loges, R. (2020). Is organic agriculture in line with the EU-Nitrate directive? On-farm nitrate leaching from organic and conventional arable crop rotations. Agriculture, Ecosystems & Environment, 298, 106964. ggt6s6.

    Google Scholar 

  11. Business Wire. https://www.businesswire.com/news/home/20200106005370/en/Indigo-Closes-200M-Financing-to-Support-Continued-Growth-of-Its-Platforms-Including-Indigo-Grain-Marketplace-and-Indigo-Carbon. Zugegriffen: 10. Dez. 2023.

  12. Bottcher, U., Weymann, W., Pullens, J. W. M., Olesen, J. E., & Kage, H. (2020). Development and evaluation of HUME-OSR: A dynamic crop growth model for winter oilseed rape. Field Crops Research, 246, 107679.

    Google Scholar 

  13. Churkina, G., Brovkin, V., von Bloh, W., Trusilova, K., Jung, F., & Dentener, F. (2009). Synergy of rising nitrogen depositions and atmospheric CO2 on land carbon uptake moderately offsets global warming. Global Biogeochemical Cycles, 23. https://doi.org/10.1029/2008GB003291.

  14. Conant, R. D. T., Drijber, R. A., Haddix, M. L., Parton, W. J., Paul, E. A., Plante, A. F., Six J., & Steinweg, J. M. (2008). Sensitivity of organic matter decomposition to warming varies with its quality. Global Change Biology, 14, 868–877. https://doi.org/10.1111/j.1365-2486.2008.01541.x.

  15. Cool Farm Alliance. (2019). https://coolfarmtool.org/cool-farm-alliance/. Zugegriffen: 13.März 2022.

  16. Churkina, G. (2013). An introduction to carbon cycle science. In D. Brown, D. Robinson, N. French, & B. Reed (Hrsg.), Land use and the carbon cycle: Advances in integrated science, management, and policy (S. 24–51). Cambridge University Press. https://doi.org/10.1017/CBO9780511894824.004.

  17. COSA. (2020). The committee on sustainability assessment, simpler resilience measurement: Tools to diagnose and improve how households fare in difficult circumstances from conflict to climate change. https://thecosa.org/wp-content/uploads/2018/04/COSA-FORD-Simpler-Resilience-Measurement-Full-20180413.pdf. Zugegriffen: 13. März 2022.

  18. Dobbs, T. L., & Pretty, J. N. (2004). Agri-environmental stewardship schemes and ‘multifunctionality’. Review of Agricultural Economics, 26(2), 220–237.

    Article  Google Scholar 

  19. Deutscher Verband für Landschaftspflege (DVL) e. V. Ed. (2020). Public goods bonus. A concept for the effective remuneration of agricultural environmental and climate protection services within the eco-schemes of the EU Common Agricultural Policy (CAP) beyond 2020, Developed in cooperation with agriculture, science and administration DVL, Ansbach. https://www.dvl.org/uploads/tx_ttproducts/datasheet/DVL-Publication-EN_Public_goods_bonus.pdf.

  20. Europäische Kommission. (2021a). https://ec.europa.eu/clima/policies/ets_en. Zugegriffen: 10. Dez. 2023.

  21. Europäische Kommission. (2021b). https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en. Zugegriffen: 10. Dez. 2023.

  22. Esperschütz, J., Gattinger, A., Mäder, P., Schloter, M., & Fließbach, A. (2007). Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS Microbiology Ecology, 61, 26–37. https://doi.org/10.1111/j.1574-6941.2007.00318.x.

  23. Enfors, E. I., Gordon, L. J., & Peterson, G. D. (2008). Making investments in dryland development work: Participatory scenario planning in the Makanya catchment Tanzania. Ecology and Society, 13, 42.

    Article  Google Scholar 

  24. Food and Agriculture Organization of the United Nations (FAO). (2014). Sustainability assessment of food and agriculture systems (SAFA) guidelines. ISBN 978-92-5-108485-4.

    Google Scholar 

  25. Food and Agriculture Organization of the United Nations (FAO). (1998). The state of food and agriculture. AGRIS:E16-E80a. ISBN 9251042004.

    Google Scholar 

  26. Fountas S., Carli, G., Sørensen, C. G., Tsiropoulos, Z., Cavalaris, C., Vatsanidou, A., Liakos, B., Canavari, M., Wiebensohn, J., & Tisserye, B. (2005). Farm management information systems: Current situation and future perspectives. Computers and Electronics in Agriculture, 115, 40–50.

    Google Scholar 

  27. Frank, M., Fischer, K., & Voeste, D. (2014a). BASF: Measurability of shared value creation in agriculture. In M. D’Heur (Hrsg.), CSR und value chain management (S. 217–236). Springer Gabler.

    Google Scholar 

  28. Flint, D. J., & Golicic, S. L. (2009). Searching for competitive advantage through sustainability: A qualitative study in the New Zealand wine industry. International Journal of Physical Distribution & Logistics Management, 39(10), 841–860. https://doi.org/10.1108/09600030911011441.

    Article  Google Scholar 

  29. FTM. (2016). Field to market: The alliance for sustainable agriculture, environmental and socioeconomic indicators for measuring outcomes of on farm agricultural production in the United States (FTM 2016 Third Edition). https://fieldtomarket.org/national-indicators-report-2016/report-downloads/. Zugegriffen: 13. März 2022.

  30. Field to Market: The Alliance for Sustainable Agriculture. (2018). Fieldprint Platform. https://calculator.fieldtomarket.org/. Zugegriffen: 13. März 2022.

  31. Field to Market: The Alliance for Sustainable Agriculture. (2019). Field to market and SAI platform announce first use of joint equivalency module by leading food companies Barry Callebaut and Unilever. https://www.duurzaam-ondernemen.nl/field-to-market-and-saiplatform-announce-first-use-of-joint-equivalency-module-by-leading-food-companies-barrycallebaut-and-unilever/. Aufgerufen am 13. März 2022.

  32. Fließbach, A., Oberholzer, H.-R., Gunst, L., & Mäder, P. (2007). Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystems & Environment, 118, 1–4.

    Google Scholar 

  33. Frank, M., Saling, P., Gipmans, M., & Schöneboom, J. (2014b). Life cycle assessment towards a sustainable food supply – A review on BASF’s strategy. In Proceedings of the 9th international conference on life cycle assessment in the agri-food sector.

    Google Scholar 

  34. Fountas, G. C., Sørensen, C. G., Tsiropoulos, Z., Cavalaris, C., Vatsanidou, A., Liakos, B., Canavari, M., Wiebensohn, J., & Tisserye, B. (2015). Farm management information systems: Current situation and future perspectives. Computers and Electronics in Agriculture, 115, 40–50.

    Google Scholar 

  35. Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., & Cosby, B. J. (2003). The nitrogen cascade. BioScience, 53(4), 341–356.

    Google Scholar 

  36. Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, L., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. Science, 327, 812–818.

    Google Scholar 

  37. Giller, K. E., Hijbeek, R., Undersson, J. A., & Sumberg, J. (2021). Regenerative agriculture: An agronomic perspective. Outlook on Agriculture, 50(1), 13–25. https://doi.org/10.1177/0030727021998063.

  38. Gregorich, E. G., Liang, B. C., Ellert, B. H., & Drury, C. F. (1996). Fertilization effects on soil organic matter turnover and corn residue C storage. Soil Science Society of America Journal, 60, 472–476. https://doi.org/10.2136/sssaj1996.03615995006000020019x.

  39. GODAN. (2016). A global data ecosystem for agriculture and food. https://www.godan.info/sites/default/files/documents/Godan_Global_Data_Ecosystem_Publication_lowres.pdf. Zugegriffen: 28. Sept. 2020.

  40. Gordon, L. J., Peterson, G. D., & Bennett, E. M. (2008). Agricultural modifications of hydrological flows create ecological surprises. Trends in Ecology & Evolution, 23, 211–219.

    Article  Google Scholar 

  41. Giovannucci, D., Scherr, S., Hebebrand, C., Shapiro, J., Milder, J., & Wheeler, K. (2020). Food and agriculture: The future of sustainability. A strategic input to the sustainable development in the 21st Century (SD21) project. https://sustainabledevelopment.un.org/content/documents/1443sd21brief.pdf. Zugegriffen: 13. März 2022.

  42. Gál, A., Vyn, T. J., Michéli, E., Kladivko, E. J., & Mc-Fee, W. W. (2019). Soil carbon and nitrogen accumulation with long-term no-till versus moldboard plowing overestimated with tilled-zone sampling depths, Soil and Tillage. Research, 96(1–2), 42–51.

    Google Scholar 

  43. Huggins, D. R., Allmaras, R. R., Clapp, C. E., Lamb, J. A., & Randall, G. W. (2007). Corn-soybean sequence and tillage effects on soil carbon dynamics and storage. Soil Science Society of America Journal, 71, 145–154. https://doi.org/10.2136/sssaj2005.0231.

    Article  CAS  Google Scholar 

  44. Harvey, C. A., Chacón, M., Donatti, C. I., Garen, E., Hannah, L., Andrade, A., Bede, L., Brown, D., Calle, A., Chará, J., Clement, C., Gray, E., Hoang, M. H., Minang, P., Rodríguez, A. M., Seeberg-Elverfeldt, C., Semroc, B., Shames, S., Smukler, S., Somarriba, E., Torquebiau, E., van Etten, J., & Wollenberg, E. (2014). Climate-smart landscapes: Opportunities and challenges for integrating adaptation, Climate-smart landscapes: Opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conservation Letters, 7(2), 77–90

    Google Scholar 

  45. Horlings, L. G., & Marsden, T. K. (2011). Towards the real green revolution? Exploring the conceptual dimensions of a new ecological modernisation of agriculture that could ‘feed the world’. Global Environmental Change, 21, 441–452.

    Article  Google Scholar 

  46. IAASTD. (2019). International assessment of agricultural knowledge, science and technology for development. Global Report. Island Press.

    Google Scholar 

  47. IPCC. (2014). Climate change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press.

    Google Scholar 

  48. Jones, R. J. A., Hiederer, R., Rusco, E., & Montanarella, L. (2005). Estimating organic carbon in the soils of Europe for policy support. European Journal of Soil Science, 56, 655–671. https://doi.org/10.1111/j.1365-2389.2005.00728.x.

  49. Jones, C., McConnell, C., Coleman, K., Cox, P., Falloon, P., Jenkinson, D., & Powlson, D. (2005). Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biology, 11, 154–166. https://doi.org/10.1111/j.1365-2486.2004.00885.x.

  50. Keystone Center. (2009). Field to market: Environmental resource indicators report, environmental resource indicators for measuring outcomes of on-farm agricultural production in the United States (NIR- 2009 First Report). https://fieldtomarket.org/national-indicators-report-2016/report-downloads/. Zugegriffen: 13. März 2022.

  51. Keystone Center. (2012). V2. Field to market: Environmental and socioeconomic indicators for measuring outcomes of on-farm agricultural production in the United States, (NIR-2012 SecondReport Version 2). https://fieldtomarket.org/national-indicators-report-2016/report-downloads/. Zugegriffen: 10. Dez. 2023.

  52. Konefal, J., Hatanaka, M., Strube, J., Glenna, L., & Conner, D. (2019). Sustainability assemblages: From metrics development to metrics implementation in United States agriculture. Journal of Rural Studies, 92, 502–509. https://doi.org/10.1016/j.jrurstud.2019.10.023.

  53. Lal, R. (2007). Soil science and the carbon civilization. Soil Science Society of America Journal, 71, 1425–1437. https://doi.org/10.2136/sssaj2007.0001.

    Article  Google Scholar 

  54. Lal, R. (2014). Abating climate change and feeding the world through soil carbon sequestration. In D. Dent (Hrsg.), Soil as world heritage. Springer. https://doi.org/10.1007/978-94-007-6187-2_47.

  55. Linton, J. D., Klassen, R., & Jayaramanet, V. (2007). Sustainable supply chains: An introduction. Journal of Operations Management, 25, 1075–1082.

    Article  Google Scholar 

  56. Loges, R., Mues, S., Kluß, C., Malisch, C. S., Loza, C., Poyda, A., Reinsch, R., & Taube, F. (2020). Dairy cows back to arable regions? Grazing leys for eco-efficient milk production systems. Grassland Science in Europe, 25, 400–402. https://www.europeangrassland.org/fileadmin/documents/Infos/Printed_Matter/Proceedings/EGF2020.pdf.

  57. Lorenz, H., Reinsch, T., Kluß, C., Taube, F., & Loges, R. (2020). Does the admixture of forage herbs affect the yield performance, yield stability and forage quality of a grass clover ley? Sustainability, 12, 5842.

    Google Scholar 

  58. Luck, J. D. (2016). Precision ag data usage: Current trends and future opportunities. Resource Magazine, 23(6), 18–19.

    Google Scholar 

  59. Lefebvre, D., Williams, A., & Meersmans, J., et al. (2020). Modelling the potential for soil carbon sequestration using biochar from sugarcane residues in Brazil. Scientific Reports, 10, 19479. https://doi.org/10.1038/s41598-020-76470-y.

  60. MacRae, R. J. (1990). Policies, programs, and regulations to support the transition to sustainable agriculture in Canada. American Journal of Alternative Agriculture, 5(2), 76–92. https://doi.org/10.1017/S0889189300003325.

  61. Maixner, E., & Brasher, P. (2020). Carbon markets lure farmers, but will benefits be enough to hook them? https://www.agri-pulse.com/articles/14880-carbon-markets-lure-farmersbut-are-benefits-enough-to-hook-them. Zugegriffen: 10. Dez. 2023.

  62. Meier, T., Christen, O., Semler, E., Jahreis, G., Voget-Kleschin, L., Schrode, A., & Artmann, M. (2014). Balancing virtual land imports by a shift in the diet. Using a land balance approach to assess the sustainability of food consumption. Germany as an example. Appetite, 74, 20–34. f5stw2.

    Google Scholar 

  63. Neumann, H., Dierking, U., & Taube, F. (2017). Erprobung und Evaluierung eines neuen Verfahrens für die Bewertung und finanzielle Honorierung der Biodiversitäts-, Klima und Wasserschutzleistungen landwirtschaftlicher Betriebe („Gemeinwohlprämie“). Berichte über Landwirtschaft – Zeitschrift für Agrarpolitik und Landwirtschaft, 95, gg5swt.

    Google Scholar 

  64. Nemecek T., Huguenin-Elie, O., Dubois, D., Gaillard, G., Schaller, B., & Chervet, A. (2011). Life cycle assessment of Swiss farming systems: II. Extensive and Intensive production, Agricultural Systems, 104(3), 233–245.

    Google Scholar 

  65. OpenTEAM. (2020). https://openteam.community. Zugegriffen: 13. März 2022.

  66. Oppermann, R., Pfister, S. C., & Eirich, A. (2020). Sicherung der Biodiversität in der Agrarlandschaft Quantifizierung des Maßnahmenbedarfs und Empfehlungen zur Umsetzung (S. 191). Institut für Agrarökologie und Biodiversität (IFAB). ISBN 978-3-00-066368-0.

    Google Scholar 

  67. Pretty, J., & Pervez Bharucha, Z. (2018). Sustainable intensification of agriculture. Greening the world’s food economy. Earthscan.

    Google Scholar 

  68. Poetz, K., Haas, R., & Balzarova, M. (2012). Emerging strategic corporate social responsibility partnership initiatives in agribusiness: The case of the sustainable agriculture initiative. Journal on Chain and Network Science, 12(2), 151–165. Wageningen Academic Publishers. https://doi.org/10.3920/JCNS2012.x010. Zugegriffen: 6. Juni 2020.

  69. Peterson, H. C. (2009). Transformational supply chains and the “wicked problem” of sustainability: Aligning knowledge, innovation, entrepreneurship, and leadership. Journal on Chain and Network Science, 9, 71–82.

    Article  Google Scholar 

  70. Piepenbrock. (2021). https://f3.de/food/ruckverfolgbarkeit-als-produktstory-1264.html. Zugegriffen: 14. Juni 2021.

  71. Poyda, A., Reinsch, T., Kluß, C., Loges, R., & Taube, F. (2016). Greenhouse gas emissions from fen soils used for forage production in northern Germany. Biogeosciences, 13, 5221–5244. gcc4t7.

    Google Scholar 

  72. Powlson, D. S., Whitmore, A. P., & Goulding, K. W. T. (2011). Soil carbon sequestration to mitigate climate change: A critical re-examination to identify the true and the false. European Journal of Soil Science, 62, 42–55.

    Article  CAS  Google Scholar 

  73. Röös, E., Bajželj, B., Smith, P., Patel, M., Little, D., & Garnett, T. (2017). Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Global Environmental Change, 47, 1–12. gcr65w.

    Google Scholar 

  74. Russell, A. E., Cambardella, C. A., Laird, D. A., Jaynes, D. B., & Meek, D. W. (2009). Nitrogen fertilizer effects on soil carbon balances in midwestern U.S. agricultural systems. Ecological Applications, 19(5), 1102–1113. https://doi.org/10.1890/07-1919.1. PMID: 19688919.

  75. Reinsch, T., Loza, C., Vogeler, I., Kluß, C., Loges, R., & Taube, F. Ecological intensification in dairy production: Towards specialised or integrated systems in northwest Europe? https://www.frontiersin.org/articles/10.3389/fsufs.2021.614348/full.

  76. SAI Sustainable Agriculture Initiative Platform. (2009). Principles & practices for sustainable production of arable & vegetable crops report. https://saiplatform.org/our-work/reports-publications/principles-practices-arable-and-vegetable-crops/. Zugegriffen: 10. Dez. 2023.

  77. SAI Sustainable Agriculture Initiative Platform. (2016). SAI platform annual report. https://saiplatform.org/wp-content/uploads/2017/05/sai-platform-annual-report-2016-2.pdf. Zugegriffen: 10. Dez. 2023.

  78. SAI – FSA Web-App. (2018a). Video file. https://fsatool.sustainabilitymap.org/index.html#!/home. Zugegriffen: 13. März 2022.

  79. SAI Sustainable Agriculture Initiative Platform. (2018). Donana Berry Project. SAI PLATFORM 6 Avenue Jules Crosnier 1206 Genf, Schweiz.

    Google Scholar 

  80. SAI Sustainable Agriculture Initiative Platform. (2019a). SAIRISI sustainability and collaboration across the value Chain. https://saiplatform.org/uploads/SAIRISI_csfinal.pdf. Zugegriffen: 10. Dez. 2023.

  81. SAI Sustainable Agriculture Initiative Platform. (2019b). European Sugar Beet Project. SAI PLATFORM 6 Avenue Jules Crosnier 1206 Geneva, Switzerland.

    Google Scholar 

  82. Senthilkumar, S., Basso, B., Kravchenko, A. N., & Robertson, G. P. (2009). Contemporary evidence of soil carbon loss in the U.S. Corn Belt. Soil Science Society of America Journal, 73, 2078–2086. https://doi.org/10.2136/sssaj2009.0044.

  83. Six, J., Conant, R. T., Paul, E. A., et al. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241, 155–176. https://doi.org/10.1023/A:1016125726789.

  84. Schoeneboom, J., Frank, M., Spencer, J., & Saling, P. (2015). Enabling farmers to reduce their impact and to show it by Life Cycle Management systems. Zusammenfassung 481, Life Cycle Management Conference, Bordeaux, 2015.

    Google Scholar 

  85. Saling, P., Frank, M., Voeste, D., Gipmans, M., Schoeneboom, J., & Gelder, R. (2012). AgBalance – holistic sustainability assessment of agricultural production, Proceedings of the 8th International Conference on Life Cycle Assessment in the Agri-Food Sector, St. Malo

    Google Scholar 

  86. Sutton, M. A., Howard, C. M., Erisman, J. W., Bealey, W. J., Billen, G., Bleeker, A., Bouwman, A. F., Grennfelt, P., van Grinsven, H., & Grizzetti, B. (2011). The challenge to integrate nitrogen science and policies: The European Nitrogen Assessment approach. In M. A. Sutton, C. M. Howard, J. W. Erisman, W. J. Bealey, G. Billen, A. Bleeker, A. F. Bouwman, P. G.rennfelt, H. van Grinsven, & B. Grizzetti (Hrsg.), The European nitrogen assessment (S. 82–96). Cambridge University Press. b2kc78.

    Google Scholar 

  87. Srinivasarao, C., Lal, R., Kundu, S., & Thakur, P. (2015). Conservation agriculture and soil carbon sequestration. In M. Farooq, & K. Siddique (Hrsg.), Conservation agriculture. Springer. https://doi.org/10.1007/978-3-319-11620-4_19.

  88. Seufert, V., & Ramankutty, N. (2017). Many shades of gray—The context-dependent performance of organic agriculture. Science Advances, 3, E1602638. ggcvf7.

    Google Scholar 

  89. Syngenta. (2015). The good growth plan progress report 2015. https://www.syngenta.com/sites/syngenta/files/presentation-and-publication/updated/thegoodgrowthplanprogressreport2015/Syngenta-The-Good-Growth-Plan-Progress-Report-2015-online-EN.PDF. Zugegriffen: 10. Dez. 2023.

  90. Tilman D., Balzer, C., Hill, J., & Befort, B. I. (2011). Global food demand and the sustainable intensification of agriculture. PNAS, 108, 20260–20264.

    Google Scholar 

  91. Teasdale, J. R. (2007). Strategies for soil conservation in no-tillage and organic farming systems. Journal of Soil and Water Conservation, 62, 144A–147A.

    Google Scholar 

  92. Tittonell, P. (2014). Ecological intensification of agriculture—sustainable by nature. Current Opinion in Environmental Sustainability, 8, 53–61. ggmkhm.

    Google Scholar 

  93. Toensmeier, E. (2016). The carbon farming solution (1. Aufl.). Chelsea Green Publishing.

    Google Scholar 

  94. The Royal Society. (2009). Reaping the benefits: Science and the sustainable intensification of global agriculture.

    Google Scholar 

  95. Taube, F., Vogeler, I., Kluß, C., Herrmann, A., Hasler, M., Rath, J., Loges, R., & Malisch, C. S. (2020). Yield progress in forage maize in NW Europe—Breeding progress or climate change effects? Frontiers in Plant Science, 11, 16. gg79j2.

    Google Scholar 

  96. Tylianakis, J. M. (2013). The global plight of pollinators. Science, 339, 1532–1533.

    Article  CAS  Google Scholar 

  97. Unilever. (2013). The sustainable source. Issue 4, Februar 2013. https://www.unilever.com/about/suppliers-centre/sustainable-sourcing-suppliers/certification-vs-self-verification/. Zugegriffen: 28. Febr. 2021.

  98. 2021. Transforming our world: The 2030 Agenda for Sustainable Development. United Nations General Assembly document A/RES/70/1. https://sustainabledevelopment.un.org/post2015/transformingourworld/publication. Zugegriffen: 13. März 2022.

  99. Unilever. (2018). Press release. https://www.unilever.com/news/press-releases/2018/unilevers-sustainable-living-plan-continues-to-fuel-growth.html.

  100. Unilever. (2019). Unilever sustainable living plan 3 year performance summary 2017–2019. https://www.unilever.com/Images/uslp-3-year-performance-summary-2017-2019_tcm244-549781_en.pdf. Zugegriffen: 28. Febr. 2021.

  101. Verra. (2021). https://verra.org/programs/verified-carbon-standard/. Zugegriffen: 10. Dez. 2023.

  102. Weltkommission für Umwelt und Entwicklung. (1987). Report of the world commission on environment and development: Our common future, United Nations general assembly document A/42/427. http://www.un-documents.net/wced-ocf.htm. Zugegriffen: 13. März 2022.

  103. WBAE, Spiller, A., Renner, B., Voget-Kleschin, L., Arens-Azevedo, U., Balmann, A., Biesalski, H. K., Birner, R., Bokelmann, W., Christen, O., Gauly, M., Grethe, H., Latacz-Lohmann, U., Martínez, J., Nieberg, H., Pischetsrieder, M., Qaim, M., Schmid, J. C., Taube, F., & Weingarten, P. (2020). “Promoting sustainability in food consumption – Developing an integrated food policy and creating fair food environments”. Executive summary and synthesis report. Berichte über Landwirtschaft. Special Issue 233. gh2zrx.

    Google Scholar 

  104. Axel Woitowitz. (2007). „Auswirkungen einer Einschränkung des Verzehrs von Lebensmitteln tierischer Herkunft auf ausgewählte Nachhaltigkeitsindikatoren – dargestellt am Beispiel konventioneller und ökologischer Wirtschaftsweise.“ Ph.D. Thesis, Technische Universität München. http://mediatum.ub.tum.de/?id=619300.

  105. Wrangler. (2018). Sustainability data in the agricultural supply chain – Technical Paper No. 2. https://kontoorbrands.app.box.com/v/burdento-benefit. Zugegriffen: 28. Febr. 2021.

  106. Wezel, A., & Soldat, V. (2009). A quantitative and qualitative historical analysis of the scientific discipline of agroecology. International Journal of Agricultural Sustainability, 7(1), 3–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith A. Wheeler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wheeler, K.A., Frank, M., Taube, F., Erdle, K., Roth, I. (2023). Nachhaltigkeitsperspektive. In: Dörr, J., Nachtmann, M. (eds) Handbuch Digital Farming. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-67086-6_6

Download citation

Publish with us

Policies and ethics