Skip to main content

Animal Models in Shoulder Research

  • Chapter
  • First Online:
Shoulder Arthroscopy

Abstract

Animal models represent a very important tool for the advancement of orthopedic research. These models enhance the understanding about the natural history of diseases, contribute to the development of new clinical treatments and surgical techniques, and serve as a bridge between in vitro studies and human clinical trials. The use of animal models permits testing of emerging theories and concepts in a coherent and controlled environment, with consistent approaches at specific time points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kanno A, Sano H, Itoi E. Development of a shoulder contracture model in rats. J Shoulder Elb Surg [Internet]. 2010;19(5):700–8. https://doi.org/10.1016/j.jse.2010.02.004.

    Article  Google Scholar 

  2. Matsen FA 3rd, Clark JM, Titelman RM, Gibbs KM, Boorman RS, Deffenbaugh D, et al. Healing of reamed glenoid bone articulating with a metal humeral hemiarthroplasty: a canine model. J Orthop Res Off Publ Orthop Res Soc. 2005;23(1):18–26.

    Article  Google Scholar 

  3. Wirth MA, Tapscott RS, Southworth C, Rockwood CAJ. Treatment of glenohumeral arthritis with a hemiarthroplasty. Surgical technique. J Bone Joint Surg Am. 2007;89(Suppl 2):10–25.

    PubMed  Google Scholar 

  4. Packer JD, Varthi AG, Zhu DS, Javier FG, Young JD, Garver JV, et al. Ibuprofen impairs capsulolabral healing in a rat model of anterior glenohumeral instability. J Shoulder Elb Surg [Internet]. 2018;27(2):315–24. https://doi.org/10.1016/j.jse.2017.09.027.

    Article  Google Scholar 

  5. Kovacevic D, Baker AR, Staugaitis SM, Kim MS, Ricchetti ET, Derwin KA. Development of an arthroscopic joint capsule injury model in the canine shoulder. PLoS One. 2016;11(1):1–15.

    Article  Google Scholar 

  6. Sheppard WL, Mosich GM, Smith RA, Hamad CD, Park HY, Zoller SD, et al. Novel in vivo mouse model of shoulder implant infection. J Shoulder Elb Surg [Internet]. 2020;29(7):1412–24. https://doi.org/10.1016/j.jse.2019.10.032.

    Article  Google Scholar 

  7. Zingman A, Li H, Sundem L, DeHority B, Geary M, Fussel T, et al. Shoulder arthritis secondary to rotator cuff tear: a reproducible murine model and histopathologic scoring system. J Orthop Res. 2017;35(3):506–14.

    Article  PubMed  Google Scholar 

  8. Kim HM, Galatz LM, Das R, Patel N, Thomopoulos S. Musculoskeletal deformities secondary to neurotomy of the superior trunk of the brachial plexus in neonatal mice. J Orthop Res Off Publ Orthop Res Soc. 2010;28(10):1391–8.

    Article  Google Scholar 

  9. Crouch DL, Hutchinson ID, Plate JF, Antoniono J, Gong H, Cao G, et al. Biomechanical basis of shoulder osseous deformity and contracture in a rat model of brachial plexus birth palsy. J Bone Jt Surg - Am. 2014;97(15):1264–71.

    Article  Google Scholar 

  10. Soslowsky LJ, Carpenter JE, DeBano CM, Banerji I, Moalli MR. Development and use of an animal model for investigations on rotator cuff disease. J Shoulder Elb Surg. 1996;5(5):383–92.

    Article  CAS  Google Scholar 

  11. Carpenter JE, Thomopoulos S, Flanagan CL, DeBano CM, Soslowsky LJ. Rotator cuff defect healing: a biomechanical and histologic analysis in an animal model. J Shoulder Elb Surg. 1998;7(6):599–605.

    Article  CAS  Google Scholar 

  12. Soslowsky LJ, Thomopoulos S, Tun S, Flanagan CL, Keefer CC, Mastaw J, et al. Neer Award 1999. Overuse activity injures the supraspinatus tendon in an animal model: a histologic and biomechanical study. J Shoulder Elb Surg. 2000;9(2):79–84.

    Article  CAS  Google Scholar 

  13. Longo UG, Forriol F, Campi S, Maffulli N, Denaro V. Animal models for translational research on shoulder pathologies: from bench to bedside. Sports Med Arthrosc. 2011;19(3):184–93.

    Article  PubMed  Google Scholar 

  14. Warden SJ. Animal models for the study of tendinopathy. Br J Sports Med. 2007;41(4):232–40.

    Article  CAS  PubMed  Google Scholar 

  15. Edelstein L, Thomas SJ, Soslowsky LJ. Rotator cuff tears: what have we learned from animal models? J Musculoskelet Neuronal Interact. 2011;11(2):150–62.

    CAS  PubMed  Google Scholar 

  16. Galatz LM, Sandell LJ, Rothermich SY, Das R, Mastny A, Havlioglu N, et al. Characteristics of the rat supraspinatus tendon during tendon-to-bone healing after acute injury. J Orthop Res Off Publ Orthop Res Soc. 2006;24(3):541–50.

    Article  CAS  Google Scholar 

  17. Cavinatto L, Malavolta EA, Pereira CAM, Miranda-Rodrigues M, Silva LCM, Gouveia CH, et al. Early versus late repair of rotator cuff tears in rats. J Shoulder Elb Surg. 2018;27(4)

    Google Scholar 

  18. Galatz LM, Charlton N, Das R, Kim HM, Havlioglu N, Thomopoulos S. Complete removal of load is detrimental to rotator cuff healing. J Shoulder Elb Surg. 2009;18(5):669–75.

    Article  Google Scholar 

  19. Galatz LM, Rothermich SY, Zaegel M, Silva MJ, Havlioglu N, Thomopoulos S. Delayed repair of tendon to bone injuries leads to decreased biomechanical properties and bone loss. J Orthop Res Off Publ Orthop Res Soc. 2005;23(6):1441–7.

    Article  CAS  Google Scholar 

  20. Killian ML, Cavinatto LM, Ward SR, Havlioglu N, Thomopoulos S, Galatz LM. Chronic degeneration leads to poor healing of repaired massive rotator cuff tears in rats. Am J Sports Med. 2015;43(10)

    Google Scholar 

  21. Thomopoulos S, Kim H-M, Rothermich SY, Biederstadt C, Das R, Galatz LM. Decreased muscle loading delays maturation of the tendon enthesis during postnatal development. J Orthop Res Off Publ Orthop Res Soc. 2007;25(9):1154–63.

    Article  Google Scholar 

  22. Thomopoulos S, Williams GR, Soslowsky LJ. Tendon to bone healing: differences in biomechanical, structural, and compositional properties due to a range of activity levels. J Biomech Eng. 2003;125(1):106–13.

    Article  CAS  PubMed  Google Scholar 

  23. Gimbel JA, Van Kleunen JP, Williams GR, Thomopoulos S, Soslowsky LJ. Long durations of immobilization in the rat result in enhanced mechanical properties of the healing supraspinatus tendon insertion site. J Biomech Eng. 2007;129(3):400–4.

    Article  CAS  PubMed  Google Scholar 

  24. Peltz CD, Sarver JJ, Dourte LM, Würgler-Hauri CC, Williams GR, Soslowsky LJ. Exercise following a short immobilization period is detrimental to tendon properties and joint mechanics in a rat rotator cuff injury model. J Orthop Res Off Publ Orthop Res Soc. 2010;28(7):841–5.

    Article  Google Scholar 

  25. Peltz CD, Dourte LM, Kuntz AF, Sarver JJ, Kim S-Y, Williams GR, et al. The effect of postoperative passive motion on rotator cuff healing in a rat model. J Bone Joint Surg Am. 2009;91(10):2421–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. De Aguiar G, Chait LA, Schultz D, Bleloch S, Theron A, Snijman CN, et al. Chemoprotection of flexor tendon repairs using botulinum toxin. Plast Reconstr Surg. 2009;124(1):201–9.

    Article  PubMed  Google Scholar 

  27. Ma J, Shen J, Smith BP, Ritting A, Smith TL, Koman LA. Bioprotection of tendon repair: adjunctive use of botulinum toxin A in Achilles tendon repair in the rat. J Bone Joint Surg Am. 2007;89(10):2241–9.

    PubMed  Google Scholar 

  28. Hettrich CM, Rodeo SA, Hannafin JA, Ehteshami J, Shubin Stein BE. The effect of muscle paralysis using Botox on the healing of tendon to bone in a rat model. J Shoulder Elb Surg. 2011;20(5):688–97.

    Article  Google Scholar 

  29. Killian ML, Cavinatto L, Galatz LM, Thomopoulos S. The role of mechanobiology in tendon healing. J Shoulder Elb Surg [Internet]. 2012;21(2):228–37. https://doi.org/10.1016/j.jse.2011.11.002.

    Article  Google Scholar 

  30. Manning CN, Kim HM, Sakiyama-Elbert S, Galatz LM, Havlioglu N, Thomopoulos S. Sustained delivery of transforming growth factor beta three enhances tendon-to-bone healing in a rat model. J Orthop Res Off Publ Orthop Res Soc. 2011;29(7):1099–105.

    Article  CAS  Google Scholar 

  31. Gulotta LV, Kovacevic D, Montgomery S, Ehteshami JR, Packer JD, Rodeo SA. Stem cells genetically modified with the developmental gene MT1-MMP improve regeneration of the supraspinatus tendon-to-bone insertion site. Am J Sports Med. 2010;38(7):1429–37.

    Article  PubMed  Google Scholar 

  32. Gulotta LV, Kovacevic D, Packer JD, Ehteshami JR, Rodeo SA. Adenoviral-mediated gene transfer of human bone morphogenetic protein-13 does not improve rotator cuff healing in a rat model. Am J Sports Med. 2011;39(1):180–7.

    Article  PubMed  Google Scholar 

  33. Beason DP, Connizzo BK, Dourte LM, Mauck RL, Soslowsky LJ, Steinberg DR, et al. Fiber-aligned polymer scaffolds for rotator cuff repair in a rat model. J Shoulder Elb Surg. 2012;21(2):245–50.

    Article  Google Scholar 

  34. Leigh DR, Mesiha M, Baker AR, Walker E, Derwin KA. Host response to xenograft ECM implantation is not different between the shoulder and body wall sites in the rat model. J Orthop Res Off Publ Orthop Res Soc. 2012;30(11):1725–31.

    Article  Google Scholar 

  35. Lipner J, Shen H, Cavinatto L, Liu W, Havlioglu N, Xia Y, et al. In vivo evaluation of adipose-derived stromal cells delivered with a nanofiber scaffold for tendon-to-bone repair. Tissue Eng - Part A. 2015;21(21–22)

    Google Scholar 

  36. Gulotta LV, Kovacevic D, Ehteshami JR, Dagher E, Packer JD, Rodeo SA. Application of bone marrow-derived mesenchymal stem cells in a rotator cuff repair model. Am J Sports Med. 2009;37(11):2126–33.

    Article  PubMed  Google Scholar 

  37. Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA. Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med. 2011;39(6):1282–9.

    Article  PubMed  Google Scholar 

  38. Zhu C, Qiu J, Thomopoulos S, Xia Y. Augmenting tendon-to-bone repair with functionally graded scaffolds. Adv Healthc Mater. 2021;10(9):e2002269.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu X, Manzano G, Kim HT, Feeley BT. A rat model of massive rotator cuff tears. J Orthop Res Off Publ Orthop Res Soc. 2011;29(4):588–95.

    Article  Google Scholar 

  40. Kim HM, Galatz LM, Lim C, Havlioglu N, Thomopoulos S. The effect of tear size and nerve injury on rotator cuff muscle fatty degeneration in a rodent animal model. J Shoulder Elb Surg. 2012;21(7):847–58.

    Article  Google Scholar 

  41. Chen M, Shetye SS, Huegel J, Riggin CN, Gittings DJ, Nuss CA, et al. Biceps detachment preserves joint function in a chronic massive rotator cuff tear rat model. Am J Sports Med. 2018;46(14):3486–94.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Okajima SM, Cubria MB, Mortensen SJ, Villa-Camacho JC, Hanna P, Lechtig A, et al. Rat model of adhesive capsulitis of the shoulder. J Vis Exp. 2018;2018(139):1–7.

    Google Scholar 

  43. Kim DH, Lee KH, Lho YM, Ha E, Hwang I, Song KS, et al. Characterization of a frozen shoulder model using immobilization in rats. J Orthop Surg Res [Internet]. 2016;11(1):1–6. https://doi.org/10.1186/s13018-016-0493-8.

    Article  Google Scholar 

  44. Liu X, Laron D, Natsuhara K, Manzano G, Kim HT, Feeley BT. A mouse model of massive rotator cuff tears. J Bone Joint Surg Am. 2012;94(7):e41.

    Article  PubMed  Google Scholar 

  45. Bell R, Taub P, Cagle P, Flatow EL, Andarawis-Puri N. Development of a mouse model of supraspinatus tendon insertion site healing. J Orthop Res Off Publ Orthop Res Soc. 2015;33(1):25–32.

    Article  Google Scholar 

  46. Lebaschi AH, Deng XH, Camp CL, Zong J, Cong GT, Carballo CB, et al. Biomechanical, histologic, and molecular evaluation of tendon healing in a new murine model of rotator cuff repair. Arthrosc - J Arthrosc Relat Surg [Internet]. 2018;34(4):1173–83. https://doi.org/10.1016/j.arthro.2017.10.045.

    Article  Google Scholar 

  47. Wang Z, Liu X, Davies MR, Horne D, Kim H, Feeley BT. A mouse model of delayed rotator cuff repair results in persistent muscle atrophy and fatty infiltration. Am J Sports Med. 2018;46(12):2981–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wirth MA, Korvick DL, Basamania CJ, Toro F, Aufdemorte TB, Rockwood CAJ. Radiologic, mechanical, and histologic evaluation of 2 glenoid prosthesis designs in a canine model. J Shoulder Elb Surg. 2001;10(2):140–8.

    Article  CAS  Google Scholar 

  49. Derwin KA, Baker AR, Iannotti JP, McCarron JA. Preclinical models for translating regenerative medicine therapies for rotator cuff repair. Tissue Eng Part B Rev. 2010;16(1):21–30.

    Article  PubMed  Google Scholar 

  50. Rodeo SA, Potter HG, Kawamura S, Turner AS, Kim HJ, Atkinson BL. Biologic augmentation of rotator cuff tendon-healing with use of a mixture of osteoinductive growth factors. J Bone Joint Surg Am. 2007;89(11):2485–97.

    Article  PubMed  Google Scholar 

  51. Gerber C, Schneeberger AG, Perren SM, Nyffeler RW. Experimental rotator cuff repair. A preliminary study. J Bone Joint Surg Am. 1999;81(9):1281–90.

    Article  CAS  PubMed  Google Scholar 

  52. Derwin KA, Baker AR, Codsi MJ, Iannotti JP. Assessment of the canine model of rotator cuff injury and repair. J Shoulder Elb Surg [Internet]. 2007;16(5):S140–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf

    Article  Google Scholar 

  53. Ahmad Z, Al-Wattar Z, Rushton N. Tissue engineering for the ovine rotator cuff: surgical anatomy, approach, implantation and histology technique, along with review of literature. J Investig Surg [Internet]. 2020;33(2):147–58. https://doi.org/10.1080/08941939.2018.1483446.

    Article  Google Scholar 

  54. Lewis CW, Schlegel TF, Hawkins RJ, James SP, Turner AS. Comparison of tunnel suture and suture anchor methods as a function of time in a sheep model. Biomed Sci Instrum. 1999;35:403–8.

    CAS  PubMed  Google Scholar 

  55. Lewis CW, Schlegel TF, Hawkins RJ, James SP, Turner AS. The effect of immobilization on rotator cuff healing using modified Mason-Allen stitches: a biomechanical study in sheep. Biomed Sci Instrum. 2001;37:263–8.

    CAS  PubMed  Google Scholar 

  56. Derwin KA, Codsi MJ, Milks RA, Baker AR, McCarron JA, Iannotti JP. Rotator cuff repair augmentation in a canine model with use of a woven poly-L-lactide device. J Bone Joint Surg Am. 2009;91(5):1159–71.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sager M, Herten M, Ruchay S, Assheuer J, Kramer M, Jäger M. The anatomy of the glenoid labrum: a comparison between human and dog. Comp Med. 2009;59(5):465–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Safran O, Derwin KA, Powell K, Iannotti JP. Changes in rotator cuff muscle volume, fat content, and passive mechanics after chronic detachment in a canine model. J Bone Jt Surg - Ser A. 2005;87(12 I):2662–70.

    Article  Google Scholar 

  59. Clinton J, Franta AK, Lenters TR, Mounce D, Matsen FA 3rd. Nonprosthetic glenoid arthroplasty with humeral hemiarthroplasty and total shoulder arthroplasty yield similar self-assessed outcomes in the management of comparable patients with glenohumeral arthritis. J Shoulder Elb Surg. 2007;16(5):534–8.

    Article  Google Scholar 

  60. Turner AS. Experiences with sheep as an animal model for shoulder surgery: strengths and shortcomings. J Shoulder Elb Surg. 2007;16(5 Suppl):S158–63.

    Article  Google Scholar 

  61. Harrison JA, Wallace D, Van Sickle D, Martin T, Sonnabend DH, Walsh WR. A novel suture anchor of high-density collagen compared with a metallic anchor. Results of a 12-week study in sheep. Am J Sports Med. 2000;28(6):883–7.

    Article  CAS  PubMed  Google Scholar 

  62. Easley J, Puttlitz C, Hackett E, Broomfield C, Nakamura L, Hawes M, et al. A prospective study comparing tendon-to-bone interface healing using an interposition bioresorbable scaffold with a vented anchor for primary rotator cuff repair in sheep. J Shoulder Elb Surg [Internet]. 2020;29(1):157–66. https://doi.org/10.1016/j.jse.2019.05.024.

    Article  Google Scholar 

  63. MacGillivray JD, Fealy S, Terry MA, Koh JL, Nixon AJ, Warren RF. Biomechanical evaluation of a rotator cuff defect model augmented with a bioresorbable scaffold in goats. J Shoulder Elb Surg. 2006;15(5):639–44.

    Article  Google Scholar 

  64. Gerber C, Meyer DC, Frey E, von Rechenberg B, Hoppeler H, Frigg R, et al. Neer Award 2007: reversion of structural muscle changes caused by chronic rotator cuff tears using continuous musculotendinous traction. An experimental study in sheep. J Shoulder Elb Surg. 2009;18(2):163–71.

    Article  Google Scholar 

  65. Obrzut SL, Hecht P, Hayashi K, Fanton GS, Thabit G 3rd, Markel MD. The effect of radiofrequency energy on the length and temperature properties of the glenohumeral joint capsule. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc North Am Int Arthrosc Assoc. 1998;14(4):395–400.

    Article  CAS  Google Scholar 

  66. Björkenheim JM, Paavolainen P, Ahovuo J, Slätis P. Resistance of a defect of the supraspinatus tendon to intraarticular hydrodynamic pressure: an experimental study on rabbits. J Orthop Res Off Publ Orthop Res Soc. 1990;8(2):175–9.

    Article  Google Scholar 

  67. Uhthoff HK, Matsumoto F, Trudel G, Himori K. Early reattachment does not reverse atrophy and fat accumulation of the supraspinatus--an experimental study in rabbits. J Orthop Res Off Publ Orthop Res Soc. 2003;21(3):386–92.

    Article  Google Scholar 

  68. Koike Y, Trudel G, Curran D, Uhthoff HK. Delay of supraspinatus repair by up to 12 weeks does not impair enthesis formation: a quantitative histologic study in rabbits. J Orthop Res Off Publ Orthop Res Soc. 2006;24(2):202–10.

    Article  Google Scholar 

  69. Tan H, Wang D, Lebaschi AH, Hutchinson ID, Ying L, Deng XH, et al. Comparison of bone tunnel and cortical surface tendon-to-bone healing in a rabbit model of biceps tenodesis. J Bone Jt Surg - Am. 2018;100(6):479–86.

    Article  Google Scholar 

  70. Gulotta LV, Rodeo SA. Growth factors for rotator cuff repair. Clin Sports Med. 2009;28(1):13–23.

    Article  PubMed  Google Scholar 

  71. Yokoya S, Mochizuki Y, Nagata Y, Deie M, Ochi M. Tendon-bone insertion repair and regeneration using polyglycolic acid sheet in the rabbit rotator cuff injury model. Am J Sports Med. 2008;36(7):1298–309.

    Article  PubMed  Google Scholar 

  72. Grumet RC, Hadley S, Diltz MV, Lee TQ, Gupta R. Development of a new model for rotator cuff pathology: the rabbit subscapularis muscle. Acta Orthop. 2009;80(1):97–103.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sonnabend DH, Howlett CR, Young AA. Histological evaluation of repair of the rotator cuff in a primate model. J Bone Joint Surg Br. 2010;92(4):586–94.

    Article  CAS  PubMed  Google Scholar 

  74. Plate JF, Bates CM, Mannava S, Smith TL, Jorgensen MJ, Register TC, et al. Histological changes of the shoulder in non-human primates. J Shoulder Elb Surg. 2014;22(8):1019–29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cavinatto, L., Galatz, L.M. (2023). Animal Models in Shoulder Research. In: Milano, G., Grasso, A., Brzóska, R., Kovačič, L. (eds) Shoulder Arthroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-66868-9_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-66868-9_63

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-66867-2

  • Online ISBN: 978-3-662-66868-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics