Skip to main content

Anchors and Sutures

  • Chapter
  • First Online:
Shoulder Arthroscopy

Abstract

Arthroscopic shoulder techniques have been significantly advanced as a result of two major events: the development of suture anchors and the introduction of ultra-high-molecular-weight-polyethylene (UHMWPE) containing suture. These anchors and their sutures play key roles in current arthroscopic shoulder surgery. In general, shoulder anchors are used in two very different areas: the glenohumeral joint for labral and ligamentous attachment to the dense glenoid bone and the bursa for rotator cuff and biceps tendon attachment to the greater or lesser tuberosity.

Suture anchor designs tend to be procedure-specific with different anchor characteristics and techniques applying to each site. Some anchor designs contain multiple sutures and hold well in osteoporotic bone (rotator cuff repairs), while others contain fewer sutures and work better in denser cortical bone (glenoid repairs). Most allow sutures to slide through an anchor eyelet for independent suture tensioning and to facilitate the creation of sliding locking knots. Knotless designs accept sutures from other anchors or the adjacent tissue and eliminate the knot tying step. Occasionally, some overlap does exist between these two areas. Shoulder instability reconstruction may require glenoid anchors for an anterior capsulolabral repair combined with cuff anchors for a remplissage attachment of the infraspinatus into the Hill Sachs lesion.

This review will cover several different features common to both types of anchor environments as well as features which differentiate the suitability of one anchor type from another. These features include the material properties for anchors and sutures, various knots and their uses, currently used suture anchors, the principles of anchor placement and common failure mechanisms, and the current debate between single- and double-row cuff repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barber FA, Coons DA, Ruiz-Suarez M. Cyclic load testing and ultimate failure strength of biodegradable glenoid anchors. Arthroscopy. 2008;24:224–8.

    Article  PubMed  Google Scholar 

  2. Barber FA, Dockery WD. Long-term absorption of beta-tricalcium phosphate poly-L-lactic acid interference screws. Arthroscopy. 2008;24:441–7.

    Article  PubMed  Google Scholar 

  3. Barber FA, Dockery WD, Hrnack SA. Long-term degradation of a poly-lactide co-glycolide/beta-tricalcium phosphate biocomposite interference screw. Arthroscopy. 2011;27:637–43.

    Article  PubMed  Google Scholar 

  4. Wust DM, Meyer DC, Favre P, et al. Mechanical and handling properties of braided polyblend polyethylene sutures in comparison to braided polyester and monofilament polydioxanone sutures. Arthroscopy. 2006;22:1146–53.

    Article  PubMed  Google Scholar 

  5. Barber FA, Herbert MA, Coons DA, et al. Sutures and suture anchors – update 2006. Arthroscopy. 2006;22(1063):e1061–9.

    Google Scholar 

  6. Kowalsky MS, Dellenbaugh SG, Erlichman DB, et al. Evaluation of suture abrasion against rotator cuff tendon and proximal humerus bone. Arthroscopy. 2008;24:329–34.

    Article  PubMed  Google Scholar 

  7. Deranlot J, Maurel N, Diop A, et al. Abrasive properties of braided polyblend sutures in cuff tendon repair: an in vitro biomechanical study exploring regular and tape sutures. Arthroscopy. 2014;30:1569–73.

    Article  PubMed  Google Scholar 

  8. Lambrechts M, Nazari B, Dini A, et al. Comparison of the cheese-wiring effects among three sutures used in rotator cuff repair. Int J Shoulder Surg. 2014;8:81–5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Williams JF, Patel SS, Baker DK, et al. Abrasiveness of high-strength sutures used in rotator cuff surgery: are they all the same? J Shoulder Elbow Surg. 2016;25:142–8.

    Article  PubMed  Google Scholar 

  10. Owens BD, Algeri J, Liang V, et al. Rotator cuff tendon tissue cut-through comparison between 2 high-tensile strength sutures. J Shoulder Elbow Surg. 2019;28:1897–902.

    Article  PubMed  Google Scholar 

  11. Ono Y, Joly DA, Thornton GM, et al. Mechanical and imaging evaluation of the effect of sutures on tendons: tape sutures are protective to suture pulling through tendon. J Shoulder Elbow Surg. 2018;27:1705–10.

    Article  PubMed  Google Scholar 

  12. Abbi G, Espinoza L, Odell T, et al. Evaluation of 5 knots and 2 suture materials for arthroscopic rotator cuff repair: very strong sutures can still slip. Arthroscopy. 2006;22:38–43.

    Article  PubMed  Google Scholar 

  13. Barber FA, Herbert MA, Beavis RC. Cyclic load and failure behavior of arthroscopic knots and high strength sutures. Arthroscopy. 2009;25:192–9.

    Article  PubMed  Google Scholar 

  14. Burkhart SS, Wirth MA, Simonich M, et al. Knot security in simple sliding knots and its relationship to rotator cuff repair: how secure must the knot be? Arthroscopy. 2000;16:202–7.

    Article  CAS  PubMed  Google Scholar 

  15. Burkhart SS, Wirth MA, Simonick M, et al. Loop security as a determinant of tissue fixation security. Arthroscopy. 1998;14:773–6.

    Article  CAS  PubMed  Google Scholar 

  16. Lo IK, Burkhart SS, Chan KC, et al. Arthroscopic knots: determining the optimal balance of loop security and knot security. Arthroscopy. 2004;20:489–502.

    Article  PubMed  Google Scholar 

  17. Kim SH, Ha KI. The SMC knot–a new slip knot with locking mechanism. Arthroscopy. 2000;16:563–5.

    Article  CAS  PubMed  Google Scholar 

  18. Hughes RE, An KN. Force analysis of rotator cuff muscles. Clin Orthop Relat Res. 1996;330:75–83.

    Article  Google Scholar 

  19. Barber FA, Herbert MA, Schroeder FA, et al. Biomechanical advantages of triple-loaded suture anchors compared with double-row rotator cuff repairs. Arthroscopy. 2010;26:316–23.

    Article  PubMed  Google Scholar 

  20. Kim KC, Rhee KJ, Shin HD. Deformities associated with the suture-bridge technique for full-thickness rotator cuff tears. Arthroscopy. 2008;24:1251–7.

    Article  PubMed  Google Scholar 

  21. Lorbach O, Bachelier F, Vees J, et al. Cyclic loading of rotator cuff reconstructions: single-row repair with modified suture configurations versus double-row repair. Am J Sports Med. 2008;36:1504–10.

    Article  PubMed  Google Scholar 

  22. Park MC, Tibone JE, ElAttrache NS, et al. Part II: Biomechanical assessment for a footprint-restoring transosseous-equivalent rotator cuff repair technique compared with a double-row repair technique. J Shoulder Elbow Surg. 2007;16:469–76.

    Article  PubMed  Google Scholar 

  23. Burkhart SS. Suture anchor insertion angle and the deadman theory. Arthroscopy. 2009;25:1365; author reply 1365–1366

    Article  PubMed  Google Scholar 

  24. Strauss E, Frank D, Kubiak E, et al. The effect of the angle of suture anchor insertion on fixation failure at the tendon-suture interface after rotator cuff repair: deadman’s angle revisited. Arthroscopy. 2009;25:597–602.

    Article  PubMed  Google Scholar 

  25. Mahar AT, Tucker BS, Upasani VV, et al. Increasing the insertion depth of suture anchors for rotator cuff repair does not improve biomechanical stability. J Shoulder Elbow Surg. 2005;14:626–30.

    Article  PubMed  Google Scholar 

  26. Fealy S, Rodeo SA, MacGillivray JD, et al. Biomechanical evaluation of the relation between number of suture anchors and strength of the bone-tendon interface in a goat rotator cuff model. Arthroscopy. 2006;22:595–602.

    Article  PubMed  Google Scholar 

  27. Tingart MJ, Apreleva M, Lehtinen J, et al. Anchor design and bone mineral density affect the pull-out strength of suture anchors in rotator cuff repair: which anchors are best to use in patients with low bone quality? Am J Sports Med. 2004;32:1466–73.

    Article  PubMed  Google Scholar 

  28. Brown BS, Cooper AD, McIff TE, et al. Initial fixation and cyclic loading stability of knotless suture anchors for rotator cuff repair. J Shoulder Elbow Surg. 2008;17:313–8.

    Article  PubMed  Google Scholar 

  29. Tashjian RZ, Levanthal E, Spenciner DB, et al. Initial fixation strength of massive rotator cuff tears: in vitro comparison of single-row suture anchor and transosseous tunnel constructs. Arthroscopy. 2007;23:710–6.

    Article  PubMed  Google Scholar 

  30. Barber FA, Coons DA, Ruiz-Suarez M. Cyclic load testing of biodegradable suture anchors containing 2 high-strength sutures. Arthroscopy. 2007;23:355–60.

    Article  PubMed  Google Scholar 

  31. Barber FA, Herbert MA, Hapa O, et al. Biomechanical analysis of pullout strengths of rotator cuff and glenoid anchors: 2011 update. Arthroscopy. 2011;27:895–905.

    Article  PubMed  Google Scholar 

  32. Barber FA, Herbert MA, Beavis RC, et al. Suture anchor materials, eyelets, and designs: update 2008. Arthroscopy. 2008;24:859–67.

    Article  PubMed  Google Scholar 

  33. Kaar TK, Schenck RC Jr, Wirth MA, et al. Complications of metallic suture anchors in shoulder surgery: a report of 8 cases. Arthroscopy. 2001;17:31–7.

    Article  CAS  PubMed  Google Scholar 

  34. Bynum CK, Lee S, Mahar A, et al. Failure mode of suture anchors as a function of insertion depth. Am J Sports Med. 2005;33:1030–4.

    Article  PubMed  Google Scholar 

  35. Bardana DD, Burks RT, West JR, et al. The effect of suture anchor design and orientation on suture abrasion: an in vitro study. Arthroscopy. 2003;19:274–81.

    Article  PubMed  Google Scholar 

  36. Chokshi BV, Kubiak EN, Jazrawi LM, et al. The effect of arthroscopic suture passing instruments on rotator cuff damage and repair strength. Bull Hosp Joint Dis. 2006;63:123–5.

    Google Scholar 

  37. Khoury LD, Kwon YW, Kummer FJ. A novel method to determine suture anchor loading after rotator cuff repair – a study of two double-row techniques. Bull NYU Hosp Joint Dis. 2010;68:25–8.

    Google Scholar 

  38. Yamakado K, Katsuo S, Mizuno K, et al. Medial-row failure after arthroscopic double-row rotator cuff repair. Arthroscopy. 2010;26:430–5.

    Article  PubMed  Google Scholar 

  39. Mazzocca AD, Millett PJ, Guanche CA, et al. Arthroscopic single-row versus double-row suture anchor rotator cuff repair. Am J Sports Med. 2005;33:1861–8.

    Article  PubMed  Google Scholar 

  40. Voigt C, Bosse C, Vosshenrich R, et al. Arthroscopic supraspinatus tendon repair with suture-bridging technique: functional outcome and magnetic resonance imaging. Am J Sports Med. 2010;38:983–91.

    Article  PubMed  Google Scholar 

  41. Hein J, Reilly JM, Chae J, et al. Retear rates after arthroscopic single-row, double-row, and suture bridge rotator cuff repair at a minimum of 1 year of imaging follow-up: a systematic review. Arthroscopy. 2015;31:2274–81.

    Article  PubMed  Google Scholar 

  42. Millett PJ, Warth RJ, Dornan GJ, et al. Clinical and structural outcomes after arthroscopic single-row versus double-row rotator cuff repair: a systematic review and meta-analysis of level I randomized clinical trials. J Shoulder Elbow Surg. 2014;23:586–97.

    Article  PubMed  Google Scholar 

  43. Burkhart SS, Cole BJ. Bridging self-reinforcing double-row rotator cuff repair: we really are doing better. Arthroscopy. 2010;26:677–80.

    Article  PubMed  Google Scholar 

  44. Barber FA. Triple-loaded single-row versus suture-bridge double-row rotator cuff tendon repair with platelet-rich plasma fibrin membrane: a randomized controlled trial. Arthroscopy. 2016;32:753–61.

    Article  PubMed  Google Scholar 

  45. Cho NS, Lee BG, Rhee YG. Arthroscopic rotator cuff repair using a suture bridge technique: is the repair integrity actually maintained? Am J Sports Med. 2011;39:2108–16.

    Article  PubMed  Google Scholar 

  46. Cho NS, Yi JW, Lee BG, et al. Retear patterns after arthroscopic rotator cuff repair: single-row versus suture bridge technique. Am J Sports Med. 2010;38:664–71.

    Article  PubMed  Google Scholar 

  47. Virk MS, Bruce B, Hussey KE, et al. Biomechanical performance of medial row suture placement relative to the musculotendinous junction in transosseous equivalent suture bridge double-row rotator cuff repair. Arthroscopy. 2017;33:242–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barber, F.A., Howard, M.S. (2023). Anchors and Sutures. In: Milano, G., Grasso, A., Brzóska, R., Kovačič, L. (eds) Shoulder Arthroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-66868-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-66868-9_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-66867-2

  • Online ISBN: 978-3-662-66868-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics