Skip to main content

Isotropic Disks in Cartesian Coordinates

  • Chapter
  • First Online:
Theory of Plates and Shells
  • 672 Accesses

Abstract

This chapter is devoted to the consideration of isotropic disk structures in Cartesian coordinates. After a short definition of what constitutes a disk, the two basic analytical approaches, namely the displacement method and the force method, are motivated and, for the force method, all basic equations necessary for the description of a disk are compiled. This is followed by an energetic consideration of the disk problem, before the solutions of the disk equation and elementary disk problems are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    George Bidell Airy, 1801–1892, English mathematician.

  2. 2.

    Note that F is in the unit of a force in the case of considering the disk stresses, whereas F must be calculated with the unit of a force multiplied by a unit of length when using the internal force flows \(N_{xx}^0\), \(N_{yy}^0\), \(\tau _{xy}^0\). We will speak of the Airy stress function F in both cases in the following, and the unit to be used results from the respective context.

  3. 3.

    Girkmann (1974) adds the volume forces to the definition of the shear stress in the form of \(\tau _{xy}=-\frac{{\partial ^2 F}}{{\partial x \partial y }}-yf_x-xf_y\).

  4. 4.

    Adhémar Jean Claude Barré de Saint-Venant, 1797–1886, French mathematician and engineer.

References

  • Altenbach, H., Altenbach, J., Naumenko, K.: Ebene Flächentragwerke, 2nd edn. Springer, Berlin (2016)

    Google Scholar 

  • Bauchau, O.A., Craig, J.I.: Structural Analysis. Springer, Dordrecht (2009)

    Google Scholar 

  • Becker, W., Gross, D.: Mechanik elastischer Körper und Strukturen. Springer, Berlin (2002)

    Google Scholar 

  • Boresi, A.P., Lynn, P.P.: Elasticity in Engineering Mechanics. Prentice-Hall, Eaglewood Cliffs (1974)

    Google Scholar 

  • Chou, P.C., Pagano, N.J.: Elasticity. Van Nostrand, Princeton (1967)

    Google Scholar 

  • Eschenauer, H., Schnell, W.: Elastizitätstheorie, 3rd edn. BI Wissenschaftsverlag, Mannheim (1993)

    Google Scholar 

  • Eschenauer, H., Olhoff, N., Schnell, W.: Applied Structural Mechanics. Springer, Berlin (1997)

    Google Scholar 

  • Filonenko-Boroditsch, M.M.: Elastizitätstheorie. VEB Fachbuchverlag, Leipzig (1967)

    Google Scholar 

  • Girkmann, K.: Flächentragwerke, 6th edn. Springer, Wien (1974)

    Google Scholar 

  • Göldner, H., Altenbach, J., Eschke, K., Garz, K.F., Sähn, S.: Lehrbuch Höhere Festigkeitslehre Band 1. Physik, Weinheim (1979)

    Google Scholar 

  • Gross, D., Hauger, W., Wriggers, P.: Technische Mechanik 4, 9th edn. Springer, Berlin (2014)

    Google Scholar 

  • Hahn, H.G.: Elastizitätstheorie. Teubner, Stuttgart (1985)

    Google Scholar 

  • Hake, E., Meskouris, K.: Statik der Flächentragwerke, 2nd edn. Springer, Berlin (2007)

    Google Scholar 

  • Leipholz, H.: Theory of Elasticity. Noordhoff, Leiden (1974)

    Google Scholar 

  • Massonet, C.: Two-dimensional problems. In: FlĂĽgge, W. (ed.) Handbook of Engineering Mechanics. McGraw-Hill, New York (1962)

    Google Scholar 

  • Sadd, M.H.: Elasticity. Elsevier, Amsterdam (2005)

    Google Scholar 

  • Sechler, E.E.: Elasticity in Engineering. Wiley, New York (1952)

    Google Scholar 

  • Timoshenko, S., Goodier, J.N.: Theory of Elasticity, 2nd edn. McGraw-Hill, New York (1951)

    Google Scholar 

  • Wang, C.T.: Applied Elasticity. McGraw-Hill, New York (1953)

    Google Scholar 

  • Wiedemann, J.: Leichtbau, Elemente und Konstruktion, 3rd edn. Springer, Berlin (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Mittelstedt .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mittelstedt, C. (2023). Isotropic Disks in Cartesian Coordinates. In: Theory of Plates and Shells. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-66805-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-66805-4_3

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-66804-7

  • Online ISBN: 978-3-662-66805-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics