Skip to main content

Microbial Degradation of Pollutants

  • Chapter
  • First Online:
Environmental Microbiology

Abstract

With the industrial development of the past hundred years, components and products from petroleum and coal have increasingly entered the environment. Other chemicals are released into the environment intentionally or partly unintentionally. Such pollutants are hydrocarbon, others are modified one such as chlorinated aromatics or aliphatics etc. The microbial degradation in the presence or absence of oxygen will be discussed for compounds such as alkanes, alkenes and cyclic alkanes, monoaromatic hydrocarbons, polynuclear hydrocarbons, chlorinated aromatics, hexachlorocyclohexane, triazines, chloroaliphatics, nitroaromatics , aromatic sulfonic acids and azo dyes, plastics, complexing agents, aminopolycarboxylic acids, endocrine active compounds, methyl tert-butyl ether and glyphosate. Mostly the respective degradative pathways were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achtnich, C., Pfortner, P., Weller, M. G., Niessner, R., Lenke, H., Knackmuss, H.-J. 1999. Reductive transformation of bound trinitrophenyl residues and free TNT during a bioremediation process analyzed by immunoassay. Environ. Sci. Technol.33:3421–3426.

    Article  CAS  Google Scholar 

  • Albers, C. N., Jacobsen, O. S., Flores, E. M. M., Pereira, J. S. F., Laier, T. 2011. Spatial variation in natural formation of chloroform in the soils of four coniferous forests. Biogeochemistry 103:317–334.

    Article  CAS  Google Scholar 

  • Andreae, M. O., Merlet, P. 2001. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 15:955–966.

    Article  CAS  Google Scholar 

  • Baker, J. M., Sturges, W. T., Sugier, J., Sunnenberg, G., Lovett, A. A., Reeves, C. E., Nightingale, P. D., Penkett, S. A. 2001. Emissions of CH3Br, organochlorines, and organoiodines from temperate macroalgae. Chemosphere – Glob. Change Sci. 3:93–106.

    CAS  Google Scholar 

  • Ballschmiter, K. 2003. Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens. Chemosphere 52:313–324.

    Article  CAS  PubMed  Google Scholar 

  • Beckmann, W. 1976. Zur biologischen Persistenz von sulfonierten aromatischen Kohlenwasserstoffen: Desulfonierung und Katabolismus der Naphthalin-2-sulfonsäure. Dissertation, Göttingen.

    Google Scholar 

  • Blasiak, L. C., Drennan, C. L. 2003. Structural perspective on enzymatic halogenation. Acc. Chem. Res. 42:147–155.

    Article  Google Scholar 

  • Borrel, G., Adam, P. S., McKay, L. J., Chen, L. X., Sierra-García, I. N., Sieber, C. M. K., Letourneur, Q., Ghozlane, A., Andersen, G. L., Li, W. J., Hallam, S. J., Muyzer, G., de Oliveira, V. M., Inskeep, W. P., Banfield, J. F., Gribaldo, S. 2019. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat. Microbiol. 4:603–613. doi: https://doi.org/10.1038/s41564-019-0363-3. Epub 2019 Mar 4.

  • Butler, A., Sandy, M. 2009. Mechanistic considerations of halogenating enzymes. Nature 460:848–854.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter, L. J., Liss, P. S., Penkett, S. A. 2003. Marine organohalogens in the atmosphere over the Atlantic and Southern Oceans. J. Geophys. Res. Atmospheres 108:4256.

    Article  Google Scholar 

  • Church, C. D., Pankow, J. F., Tratnyek, P. G. 2000. Effects of environmental conditions on MTBE degradation in column model aquifers. II. Kinetics. Preprints of extended abstracts, ACS National Meeting, Am. Chem. Soc., Div. Environ. Chem. 40:238–240.

    Google Scholar 

  • Cox, M. L., Sturrock, G. A., Fraser, P. J., Siems, S. T., Krummel, P. D., O’Doherty, S. 2003. Regional sources of methyl chloride, chloroform and dichloromethane identified from AGAGE observations at Cape Grim, Tasmania, 1998–2000. J. Atmos. Chem. 45:79–99.

    Article  CAS  Google Scholar 

  • Danso, D., Schmeisser, C., Chow, J., Zimmermann, W., Wei, R., Leggewie, C., Li, X., Hazen, T., Streit, W. R. 2018. New insights into the function and global distribution of polyethylene terephthalate (PET) degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl. Environ. Microbiol. 84 (8): e02773–17. doi: https://doi.org/10.1128/aem.02773-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Detzel, A., Kauertz, B., Derreza-Greeven, C. 2012. Untersuchung der Umweltwirkungen von Verpackungen aus biologisch abbaubaren Kunststoffen. Bericht des Umweltbundesamtes. Nr. 52/2012 http://www.umweltbundesamt.de/uba-info-medien/3986.html.

  • Dimmer, C. H., Simmonds, P. G., Nickless, G., Bassford, M. R. 2001. Biogenic fluxes of halomethanes from Irish peatland ecosystems. Atmos. Environ. 35:321–330.

    Article  CAS  Google Scholar 

  • Dong, C., Huang, F., Deng, H., Schaffrath, C., Spencer, J. B., O’Hagan, D., Naismith, J. H. 2004. Crystal structure and mechanism of a bacterial fluorinating enzyme. Nature 427:561–565.

    Article  CAS  PubMed  Google Scholar 

  • Ekdahl, A., Pedersen, M., Abrahamsson, K. 1998. A study of the diurnal variation of biogenic volatile halocarbons. Marine Chem. 63:1–8.

    Article  CAS  Google Scholar 

  • Fent, K. 2003. Ökotoxikologie. Umweltchemie, Toxikologie, Ökologie. 2. Aufl., Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Gribble, G. W. 1992. Naturally occurring organohalogen compounds – a survey. J. Nat. Prod. 55:1353–1395.

    Article  CAS  Google Scholar 

  • Gribble, G. W. 2015. A recent survey of naturally occurring organohalogen compounds. Environ. Chem. 12:396–405.

    Article  CAS  Google Scholar 

  • Gunkel, W. 1988. Ölverunreinigung der Meere und Abbau der Kohlenwasserstoffe durch Mikroorganismen. In: Angewandte Mikrobiologie der Kohlenwasserstoffe in Industrie und Umwelt. (Hrsg. R. Schweisfurth), Expert Verlag, Esslingen, Bd. 164:18–36.

    Google Scholar 

  • Hardacre, C. J., Heal, M. R. 2013. Characterization of methyl bromide and methyl chloride fluxes at temperate freshwater wetlands. J. Geophys. Res., Atmospheres 118:977–991.

    CAS  Google Scholar 

  • Haselmann, K. F., Laturnus, F., Svensmark, B., Grøn, C. 2000. Formation of chloroform in spruce forest soil – results from laboratory incubation studies. Chemosphere 41:1769–1774.

    Article  CAS  PubMed  Google Scholar 

  • Haselmann, K., Laturnus, F., Grøn, C. 2002. Formation of chloroform in soil. A year-round study at a Danish spruce forest Site. Water. Air. Soil Pollut. 139:35–41.

    Article  CAS  Google Scholar 

  • Hove-Jensen, B., Zechel, D. L., Jochimsen, B. 2014. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiol. Mol. Biol. Rev. 78:176–197.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huntscha, S., Stravs, M. A., Bühlmann, A., Ahrens, C. H., Frey, J. E., Pomati, F., Hollender, J., Buerge, I. J., Balmer, M. E., Poiger, T. 2018. Seasonal dynamics of glyphosate and AMPA in Lake Greifensee: Rapid microbial degradation in the epilimnion during summer. Environ. Sci. Technol. 52:4641–4649. doi: https://doi.org/10.1021/acs.est.8b00314.

    Article  CAS  PubMed  Google Scholar 

  • Jordan, A., Harnisch, J., Borchers, R., Le Guern, F., Shinohara, H. 2000. Volcanogenic halocarbons. Environ. Sci. Technol. 34:1122–1124.

    Article  CAS  Google Scholar 

  • Khalil, M. A. K., Rasmussen, R. A., French, J. R. J., Holt, J.A. 1990. The influence of termites on atmospheric trace gases: CH4, CO, CHCl3, N2O, CO, H2, and light hydrocarbons. J. Geophys. Res. 95:3619–3634.

    Article  Google Scholar 

  • Keppler, F., Borchers, R., Pracht, J., Rheinberger, S., Schöler, H. F. 2002. Natural formation of vinyl chloride in the terrestrial environment. Environ. Sci. Technol. 36:2479–2483.

    Article  CAS  PubMed  Google Scholar 

  • Keppler, F., Borchers, R., Hamilton, J. T. G., Kilian, G., Pracht, J., Schöler, H. F. 2006. De novo formation of chloroethyne in soil. Environ. Sci. Technol. 40:130–134.

    Article  CAS  PubMed  Google Scholar 

  • Laso-Pérez, R., Hahn, C., van Vliet, D. M., Tegetmeyer, H. E., Schubotz, F., Smit, N. T., Pape, T., Sahling, H., Bohrmann, G., Boetius, A., Knittel, K., Wegener, G. 2019. Anaerobic degradation of non-methane alkanes by “Candidatus Methanoliparia” in hydrocarbon seeps of the Gulf of Mexico. mBio10:e01814-19. doi: https://doi.org/10.1128/mbio.01814-19.

  • Laturnus, F., Haselmann, K. F., Borch, T., Grøn, C. 2002. Terrestrial natural sources of trichloromethane (chloroform, CHCl3) – An overview. Biogeochem. 60:121–139.

    Article  CAS  Google Scholar 

  • Malle, K.-G. 1978. Wie schmutzig ist der Rhein? Chemie in unserer Zeit 12: 111–122. doi: https://doi.org/10.1002/ciuz.19780120403.

    Article  CAS  Google Scholar 

  • National Research Council 1985. Oil in the sea – Inputs, fates and effects. National Acad Press. Washington D. C., pp. 601.

    Google Scholar 

  • Poremba, K., Gunkel, W., Lang, S., Wagner, F. 1989. Mikrobieller Ölabbau im Meer. Biologie in unserer Zeit. 19:145–148.

    Article  Google Scholar 

  • Rudolph, J., Khedim, A., Koppmann, R., Bonsang, B. 1995. Field study of the emissions of methyl chloride and other halocarbons from biomass burning in Western Africa. J. Atmospheric Chem. 22:67–80.

    Article  CAS  Google Scholar 

  • Ruecker, A., Weigold, P., Behrens, S., Jochmann, M., Laaksand, J., Kappler, A. 2014. Predominance of biotic over abiotic formation of halogenated hydrocarbons in hypersaline sediments in Western Australia. Environ. Sci. Technol. 48:9170–9178.

    Article  CAS  PubMed  Google Scholar 

  • Schwandner, F. M., Seward, T. M., Gize, A. P., Hall, P. A., Dietrich, V. J. 2004. Diffuse emission of organic trace gases from the flank and crater of a quiescent active volcano (Vulcano, Aeolian Islands, Italy). J. Geophys. Res., Atmosphere 109:D04301-20.

    Google Scholar 

  • Sviridov, A. V., Shushkova, T. V., Ermakova, I. T., Ivanova, E. V., Epiktetov, D. O., Leontievsky, A. A. 2015. Microbial degradation of glyphosate herbicides (review). Appl. Biochem. Microbiol. 51:188–195.

    Article  CAS  Google Scholar 

  • Tanasupawat, S., Takehana, T., Yoshida, S., Hiraga, K., Oda, K. 2016. Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades PET. Int. J. Syst. Evol. Microbiol. 66:2813–2818, doi: https://doi.org/10.1099/ijsem.0.001058.

    Article  CAS  PubMed  Google Scholar 

  • Trudinger, C. M., Etheridge, D. M., Sturrock, G. A., Fraser, P. J., Krummel, P. B., McCulloch, A. 2004. Atmospheric histories of halocarbons from analysis of Antarctic firn air: Methyl bromide, methyl chloride, chloroform, and dichloromethane. J. Geophys. Res., Atmosphere 109:D22310 1–15.

    Google Scholar 

  • Umweltbundesamt (2001): Tributylzinnverbindungen http://www.umweltbundesamt.de/verkehr/verkehrstraeg/seeschiff/verschmutzung/tbt.htm sowie http://www.umweltbundesamt.de/wasser/themen/ow_s2_2.htm.

  • Vaillancourt, F. H., Yeh, E., Vosburg, D. A., Garneau-Tsodikova, S., Walsh, C. T. 2006. Nature’s inventory of halogenation catalysts: oxidative strategies predominate. Chem. Rev. 106:3364–3378.

    Article  CAS  PubMed  Google Scholar 

  • Vaillancourt, F. H., Yeh, E., Vosburg, D. A., O’Connor, S. E., Walsh, C. T. 2005. Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis. Nature 436:1191–1194.

    Article  CAS  PubMed  Google Scholar 

  • van Pée, K. H., Unversucht, S. 2003. Biological dehalogenation and halogenation reactions. Chemosphere 52:299–312.

    Article  PubMed  Google Scholar 

  • van Pée, K. H., Patallo, E. P. 2006. Flavin-dependent halogenases involved in secondary metabolism in bacteria. Appl. Microbiol. Biotechnol. 70:631–641.

    Article  PubMed  Google Scholar 

  • Weissflog, L., Lange, C. A., Pfennigsdorff, A., Kotte, K. 2005. Sediments of salt lakes as a new source of volatile highly chlorinated C1/C2 hydrocarbons. Geophys. Res. Lett. 32:1–4.

    Article  Google Scholar 

  • Witt, U., Müller, R.-J. and Klein, J. 1997. Biologisch abbaubare Polymere – Status und Perspektiven, Report Franz-Patat-Zentrum, Braunschweig.

    Google Scholar 

  • Wuosmaa, A., Hager, L. 1990. Methyl chloride transferase: a carbocation route for biosynthesis of halometabolites. Science 249:160–162.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., Oda, K. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–1199.

    Article  CAS  PubMed  Google Scholar 

  • Zumstein, M. T., Schintlmeister, A., Nelson, T. F., Baumgartner, R., Woebken, D., Wagner, M., Kohler, H.-P. E., McNeill, K., Sander, M. 2018. Biodegradation of synthetic polymers in soils: Tracking carbon into CO2 and microbial biomass. Sci. Adv. 4, eaas9024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Further Reading

  • Atlas, R. M. 1984. Petroleum Microbiology. Macmillan Publ. Comp., New York.

    Google Scholar 

  • Beier, W. 2009 Biologisch abbaubare Kunststoffe. Hintergrundbericht des Umweltbundesamtes, Dessau-Roßlau.

    Google Scholar 

  • Boll, M., Fuchs, G., Heider, J. 2002. Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr. Opin. Chem. Biol. 6:604–611.

    Article  CAS  PubMed  Google Scholar 

  • Boll, M., Fuchs, G. 2005. Unusual reactions involved in anaerobic metabolism of phenolic compounds. Biol. Chem. 386:989–997.

    Article  CAS  PubMed  Google Scholar 

  • Breider, F., Albers, C. N. 2015. Formation mechanisms of trichloromethyl-containing compounds in the terrestrial environment: A critical review. Chemosphere 119:145–154.

    Article  CAS  PubMed  Google Scholar 

  • Bressler, D. C., Norman, J. A., Fedorak, P. M. 1998. Ring cleavage of sulfur heterocycles: how does it happen? Biodegradation 8:297–311.

    Article  CAS  Google Scholar 

  • Bucheli-Witschel M, Egli T. 2001. Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiol. Rev. 25:69–106.

    Article  CAS  PubMed  Google Scholar 

  • Cappelletti, M., Frascari, D., Zannoni, D., Fedi, S. 2012. Microbial degradation of chloroform. Appl. Microbiol. Biotechnol. 96:1395–1409.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty, R., Coates, J. D. 2004. Anaerobic degradation of monoaromatic hydrocarbons. Appl. Microbiol. Biotechnol. 64:437–446.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty, R., O’Connor, S. M., Chan, E., Coates, J. D. 2005. Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB. Appl. Environ. Microbiol. 71:8649–8655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coates, J. D., Achenbach, L. A. 2004. Microbial perchlorate reduction: rocket fuelled metabolism. Nat. Rev. Microbiol. 2:569–580.

    Article  CAS  PubMed  Google Scholar 

  • Cook, A. M., Laue, H., Junker, F. 1998. Microbial desulfonation. FEMS Microbiol. Rev. 22:399–419.

    Article  CAS  PubMed  Google Scholar 

  • Corvini, P. F., Schäffer, A., Schlösser, D. 2006. Microbial degradation of nonylphenol and other alkylphenols-our evolving view. Appl. Microbiol. Biotechnol. 72:223–243.

    Article  CAS  PubMed  Google Scholar 

  • Davenport, R. E., Dubois, F., DeBoo, A., Kishi, A. 2000. Chelating agents – CEH Product Review. In: Chemical Economics Handbook. SRI International

    Google Scholar 

  • Deeb, R. A., Scow, K. M., Alvarez-Cohen, L. 2000. Aerobic MTBE biodegradation: an examination of past studies, current challenges and future research directions. Biodegradation 11:171–186.

    Article  CAS  PubMed  Google Scholar 

  • Denef, V. J., Patrauchan, M. A., Florizone, C., Park, J., Tsoi, T. V., Verstraete, W., Tiedje, J. M., and Eltis, L. D. 2005. Growth substrate- and phase-specific expression of biphenyl, benzoate, and C1 metabolic pathways in Burkholderia xenovorans LB400. J. Bacteriol. 187:7996–8005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denef, V. J., Klappenbach, J. A., Patrauchan, M. A., Florizone, C., Rodrigues, J. L., Tsoi, T. V., Verstraete, W., Eltis, L. D., and Tiedje, J. M. 2006. Genetic and genomic insights into the role of benzoate-catabolic pathway redundancy in Burkholderia xenovorans LB400. Appl. Environ. Microbiol. 72:585–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz, E., Ferrandez A., Prieto M. A., Garcia J. L. 2001. Biodegradation of aromatic compounds by Escherichia coli. Microbiol. Mol. Biol. Rev. 65:523–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolfing, J. 1998. Halogenation of aromatic compounds: thermodynamic, mechanistic and ecological aspects. FEMS Microbiol. Lett. 167:271–274.

    Article  CAS  PubMed  Google Scholar 

  • Egli, T., Witschel, M. 2002. Enzymology of the breakdown of synthetic chelating agents. In: Focus on Biotechnology (S. N. Agathos, W. Reineke, eds.) Volume 3A, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 205–17.

    Google Scholar 

  • Fayolle, F., Vandecasteele, J. P., Monot, F. 2001. Microbial degradation and fate in the environment of methyl tert-butyl ether and related fuel oxygenates. Appl. Microbiol. Biotechnol. 56:339–349.

    Article  CAS  PubMed  Google Scholar 

  • Fetzner, S. 1998. Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions. Appl. Microbiol. Biotechnol. 49:237–250.

    Article  CAS  Google Scholar 

  • Fuchs, G. 2008. Anaerobic metabolism of aromatic compounds. Ann. N. Y. Acad. Sci. 1125:82–99.

    Article  CAS  PubMed  Google Scholar 

  • Gaillard, M., Vallaeys, T., Vorholter, F. J., Minoia, M., Werlen, C., Sentchilo, V., Pühler, A., van der Meer, J. R. 2006. The clc element of Pseudomonas sp. strain B13, a genomic island with various catabolic properties. J. Bacteriol. 188:1999–2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gescher, J., Eisenreich, W., Wörth, J., Bacher, A., Fuchs, G. 2005. Aerobic benzoyl-CoA catabolic pathway in Azoarcus evansii: studies on the non-oxygenolytic ring cleavage enzyme. Mol. Microbiol. 56:1586–1600.

    Article  CAS  PubMed  Google Scholar 

  • Gescher, J., Ismail, W., Ölgeschläger, E., Eisenreich, W., Wörth, J., Fuchs, G. 2006. Aerobic benzoyl-coenzyme A (CoA) catabolic pathway in Azoarcus evansii: Conversion of ring cleavage product by 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase. J. Bacteriol. 188:2919–2927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gescher, J., Zaar, A., Mohamed, M., Schägger, H., Fuchs, G. 2002. Genes coding for a new pathway of aerobic benzoate metabolism in Azoarcus evansii. J. Bacteriol. 184:6301–6315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gribble, G. W. 1998. Naturally occurring organohalogen compounds. Acc. Chem. Res. 31:141–152.

    Article  CAS  Google Scholar 

  • Gribble, G. W. 1999. The diversity of naturally occurring organobromine compounds. Chem. Soc. Rev. 28:335–346.

    Article  CAS  Google Scholar 

  • Gribble, G. W. 2002. Neilson, A. H., ed., Naturally occurring organofluorines. Organofluorines 3n: 121–136.

    Google Scholar 

  • Gribble, G. W. 2003. The diversity of naturally produced organohalogens. Chemosphere 52:289–297.

    Article  CAS  PubMed  Google Scholar 

  • Gribble, G. W. 2010. Naturally occurring organohalogen compounds – A comprehensive update, Progress in the Chemistry of Organic Natural Products, Vol. 91, doi: https://doi.org/10.1007/978-3-211-99323-1_1, Springer-Verlag/Wien.

  • Habe, H., Omori, T. 2003. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria.. Biosci. Biotechnol. Biochem. 67:225–243.

    Article  CAS  PubMed  Google Scholar 

  • Harwood, C.S., Gibson, J. 1997. Shedding light on anaerobic benzene ring degradation: a process unique to prokaryotes? J. Bacteriol.179:301–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haug, W., Schmidt, A., Nörtemann, B., Hempel, D. C., Stolz, A., Knackmuss, H.-J. 1991. Mineralization of the sulfonated azo dye Mordant Yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium. Appl. Environ. Microbiol. 57:3144–3149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heider, J., Fuchs, G. 1997. Anaerobic metabolism of aromatic compounds. Eur. J. Biochem. 243:577–596.

    Article  CAS  PubMed  Google Scholar 

  • Heiss, G., Knackmuss, H.-J. 2002. Bioelimination of trinitroaromatic compounds: immobilization versus mineralization. Curr. Opin. Microbiol. 5:282–287.

    Article  CAS  PubMed  Google Scholar 

  • Herman, D. C., Frankenberger, W. T., Jr. 1998. Microbial-mediated reduction of perchlorate in groundwater. J. Environ. Qual. 27:750–754.

    Article  CAS  Google Scholar 

  • Hofmann, K. W., Knackmuss, H.-J., Heiss, G. 2004. Nitrite elimination and hydrolytic ring cleavage in 2,4,6-trinitrophenol (picric acid) degradation. Appl. Environ. Microbiol. 70: 2854–2860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn, S., Bader, H. J., Buchholz, K. 2003. Kunststoffe aus nachwachsenden Rohstoffen. In: Green Chemistry – Nachhaltigkeit in der Chemie. (Gesellschaft Deutscher Chemiker, Hrsg.) Wiley-VCH, Weinheim 55–74.

    Google Scholar 

  • Itterhagen, M. 2012. Biokunststoffe nicht besser. Verpackungen aus bioabbaubaren Kunstoffen sind denen aus herkömmlichen Kunststoffen nicht überlegen. Presseinformation des Umweltbundesamtes. Nr. 37/2012.

    Google Scholar 

  • Janssen, D. B., Dinkla, I. J., Poelarends, G. J., Terpstra, P. 2005. Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. Environ. Microbiol. 7:1868–1882.

    Article  CAS  PubMed  Google Scholar 

  • Janssen, D. B., Oppentocht, J. E., Poelarends, G. J. 2001. Microbial dehalogenation. Curr. Opin. Biotechnol. 12:254–258.

    Article  CAS  PubMed  Google Scholar 

  • Janssen, D. B., van der Ploeg, J. R., Pries, F. 1995. Genetic adaptation of bacteria to halogenated aliphatic compounds. Environ. Health Perspect. 103 Suppl. 5:29–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Landmeyer, J. E., Chapelle, F. H., Herlong, H. H., Bradley, P. M. 2001. Methyl tert-butyl ether biodegradation by indigenous aquifer microorganisms under natural and artificial oxic conditions. Environ. Sci. Technol. 35:1118–1126.

    Article  CAS  PubMed  Google Scholar 

  • Logan, B. E. 1998. A review of chlorate- and perchlorate respiring microorganisms. Bioremed. J. 2:69–79.

    Article  CAS  Google Scholar 

  • Lopes Ferreira, N., Malandain, C., Fayolle-Guichard, F. 2006. Enzymes and genes involved in the aerobic biodegradation of methyl tert-butyl ether (MTBE). Appl. Microbiol. Biotechnol. 72:252–262.

    Article  CAS  PubMed  Google Scholar 

  • Nörtemann, B. 1999. Biodegradation of EDTA. Appl. Microbiol. Biotechnol. 51:751–759.

    Article  PubMed  Google Scholar 

  • Nojiri, H., Omori, T. 2002. Molecular bases of aerobic bacterial degradation of dioxins: involvement of angular dioxygenation. Biosci. Biotechnol. Biochem. 66:2001–2016.

    Article  CAS  PubMed  Google Scholar 

  • Nowack, B. 2002. Environmental chemistry of aminopolycarboxylate chelating agents. Environ. Sci. Technol. 36:4009–4016.

    Article  CAS  PubMed  Google Scholar 

  • N.N. 1996. Abschätzende Ökobilanzen zu Polymerwerkstoffen auf der Basis biologisch erzeugter Polyhydroxyfettsäuren; Fraunhofer Institut für Lebensmitteltechnologie und Verpackung, Juli 1996.

    Google Scholar 

  • N.N. 2003. Metallocene. Kreative Baumeister. Bayer Research. Heft 15:72–75 zitiert: „Industrielle makromolekulare Chemie: die wirtschaftliche Entwicklung im Jahre 2001“ In: Nachrichten aus der Chemie 51, 341.

    Google Scholar 

  • N.N. 2007. Vergleichende Ökobilanz verschiedener Bechersysteme beim Getränkeausschank, Österreichisches Ökologie Institut, Carbotech, Öko-Institut e. V.; Wien, Basel, Darmstadt 2007.

    Google Scholar 

  • Olson, G. J., Brieley, J. A., Brieley, C. L. 2003. Bioleaching part B: Progress in bioleaching: applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol. 63:249–257.

    Article  CAS  PubMed  Google Scholar 

  • Patel, M., Bastioli, C., Marini, L., Würdinger, E. 2005. Life-cycle Assessment of Bio-based Polymers and Natural Fiber Composites; Biopolymers Online, Wiley.

    Google Scholar 

  • Pieper, D. H. 2005. Aerobic degradation of polychlorinated biphenyls. Appl. Microbiol. Biotechnol. 67:170–191.

    Article  CAS  PubMed  Google Scholar 

  • Pieper, D. H., Reineke, W. 2000. Engineering bacteria for bioremediation. Curr. Opin. Biotechnol. 11:262–270.

    Article  CAS  PubMed  Google Scholar 

  • Pieper, D. H., Reineke, W. 2004. Degradation of chloroaromatics by Pseudomona(d)s. In: Pseudomonas (J.-L. Ramos ed.), Kluwer Academic/Plenum Publishers, New York, 3:509–574.

    Google Scholar 

  • Potter, M., Steinbüchel, A. 2005. Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromolecules 6:552–560.

    Article  PubMed  Google Scholar 

  • Rabus, R., Kube, M., Heider, J., Beck, A., Heitmann, K., Widdel, F., Reinhardt, R. 2005. The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch. Microbiol. 183:27–36.

    Article  CAS  PubMed  Google Scholar 

  • Rather, L. J., Knapp, B., Haehnel, W., Fuchs, G. 2010. Coenzyme A-dependent aerobic metabolism of benzoate via epoxide formation. J. Biol. Chem. 285:20615–20624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reineke, W. 1998. Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annu. Rev. Microbiol. 52:287–331.

    Article  CAS  PubMed  Google Scholar 

  • Reineke, W. 2001. Aerobic and anaerobic biodegradation potentials of microorganisms. In: The Handbook of Environmental Chemistry (O. Hutzinger, ed.) Vol. 2K The Natural Environment and Biogeochemical Cycles (Volume editor: B. Beek), Springer Verlag, Berlin, pp. 1–161.

    Google Scholar 

  • Reineke, W., Mars, A. E., Kaschabek, S. R., Janssen, D. B. 2002. Microbial degradation of chlorinated aromatic compounds. The meta-cleavage pathway. In: Focus on Biotechnology (S. N. Agathos, W. Reineke, eds.) Volume 3A, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 157–168.

    Google Scholar 

  • Reineke, W., Pieper, D. H. 2005. Evolution of degradative pathways for chloroaromatic compounds. In: Innovative Approaches to the Bioremediation of Contaminated Sites. (F. Fava, P. Canepa, eds.), Soil Remediation Series No.5, INCA, Venice, Italy, pp. 111–127.

    Google Scholar 

  • Schink, B. 2002. Synergistic interactions in the microbial world. Ant. v. Leeuwenhoek 81:257–261.

    Article  CAS  Google Scholar 

  • Schink, B. 2006. Syntrophic associations in methanogenic degradation. Prog. Mol. Subcell. Biol. 41:1–19.

    Article  CAS  PubMed  Google Scholar 

  • Schink, B., Philipp, B., Müller, J. 2000. Anaerobic degradation of phenolic compounds. Naturwissenschaften 87:12–23.

    Article  CAS  PubMed  Google Scholar 

  • Schink, B. 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61:262–280.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schirmer, M., Butler, B. J., Church, C. D., Barker, J. F., Nadarajah, N. 2003. Laboratory evidence of MTBE biodegradation in Borden aquifer material. J. Contam. Hydrol. 60:229–249.

    Article  CAS  PubMed  Google Scholar 

  • Schlömann, M. 1994. Evolution of chlorocatechol catabolic pathways. Conclusions to be drawn from comparisons of lactone hydrolases. Biodegradation 5:301–321.

    Article  PubMed  Google Scholar 

  • Spain, J. C. 1995. Biodegradation of nitroaromatic compounds. Annu. Rev. Microbiol. 49:523–555.

    Article  CAS  PubMed  Google Scholar 

  • Steinbüchel, A., Hein, S. 2001. Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv. Biochem. Eng. Biotechnol. 71:81–123.

    PubMed  Google Scholar 

  • Stolz, A. 2001. Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol. 56:69–80.

    Article  CAS  PubMed  Google Scholar 

  • Teufel, R., Mascaraque, V., Ismail, W., Voss, M., Perera, J., Eisenreich, W., Haehnel, W., Fuchs, G. 2010. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc. Natl. Acad. Sci. USA 107:14390–14395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokiwa, Y., Calabia, B. P. 2004. Degradation of microbial polyesters. Biotechnol Lett. 26:1181–1189.

    Article  CAS  PubMed  Google Scholar 

  • Tokiwa, Y., Calabia, B. P. 2006. Biodegradability and biodegradation of poly(lactide). Appl. Microbiol. Biotechnol. 72:244–251.

    Article  CAS  PubMed  Google Scholar 

  • Umweltbundesamt (2000): 1,3,5-Triazine im Grundwasser Deutschlands

    Google Scholar 

  • van Agteren, M. H., Keuning, S., Janssen, D. B. 1998. Handbook on biodegradation and biological treatment of hazardous organic compounds. Kluwer Academic Publ., Dordrecht, The Netherlands.

    Book  Google Scholar 

  • van der Meer, J. R., Sentchilo, V. 2003. Genomic islands and the evolution of catabolic pathways in bacteria. Curr. Opin. Biotechnol. 14:248–254.

    Article  PubMed  Google Scholar 

  • van der Meer, J. R., Ravatn, R., Sentchilo, V. 2001. The clc element of Pseudomonas sp. strain B13 and other mobile degradative elements employing phage-like integrases. Arch. Microbiol. 175:79–85.

    Article  PubMed  Google Scholar 

  • van Hamme, J. D., Singh, A., Ward, O. P. 2003. Recent advances in petroleum microbiology. Microbiol. Molec. Biol. Rev. 67:503–549.

    Article  Google Scholar 

  • van Hylckama Vlieg, J. E., Poelarends, G. J., Mars, A. E., Janssen, D. B. 2000. Detoxification of reactive intermediates during microbial metabolism of halogenated compounds. Curr. Opin. Microbiol. 3:257–262.

    Article  PubMed  Google Scholar 

  • Villemur, R., Lanthier, M., Beaudet, R., Lépine, F. 2006. The Desulfitobacterium genus. FEMS Microbiol Rev. 30:706–733.

    Article  CAS  PubMed  Google Scholar 

  • Wackett, L. P., Hershberger, C. D. 2001. Biocatalysis and biodegradation. Microbial transformation of organic compounds. ASM Press, Washington, D. C.

    Google Scholar 

  • Xu, J. L., Song, Y. U., Min, B. K., Steinberg, L., Logan, B. E. 2003. Microbial degradation of perchlorate: principles and applications. Environ. Eng. Sci. 20:405–422.

    Article  CAS  Google Scholar 

  • Zaar, A., Eisenreich, W., Bacher, A., Fuchs, G. 2001. A novel pathway of aerobic benzoate catabolism in the bacteria Azoarcus evansii and Bacillus stearothermophilus. J. Biol. Chem. 276:24997–25004.

    Article  CAS  PubMed  Google Scholar 

  • Zaar, A., Gescher, J., Eisenreich, W., Bacher, A., Fuchs, G. 2004. New enzymes involved in aerobic benzoate metabolism in Azoarcus evansii. Mol. Microbiol. 54:223–238.

    Article  CAS  PubMed  Google Scholar 

  • US-Daten Produktion: http://www.the-innovation-group.com/chemprofile.htm.

  • EU-Daten Verbrauch: http://ecb.jrc.it/existing-chemicals.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Reineke .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reineke, W., Schlömann, M. (2023). Microbial Degradation of Pollutants. In: Environmental Microbiology. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-66547-3_6

Download citation

Publish with us

Policies and ethics