Skip to main content

Biotechnology and Environmental Protection

  • Chapter
  • First Online:
Environmental Microbiology

Abstract

The concerns of environmentally sound pest control are increasingly leading to the search for microorganisms that can be used as antagonists against so-called harmful insects or whose metabolic products are suitable as new active substances. Biotechnology and environmental protection includes biological pest control as well as the design of new chemicals i.e. study structure-activity relationship/predictability of degradation and to create degradable alternatives to current chemicals. Product-integrated environmental protection and process comparison is discussed: Biotechnical versus chemical-technical processes. The potential of biofuels to function as substitute on the energy market were discussed: Bioethanol biodiesel, biomass-to-liquid fuel. In addition, the production of electricity and hydrogen by microorganisms is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anastas, P. T., Warner, J. J. 1998. Green Chemistry: Theory and Practice. Oxford University Press, New York, NY.

    Google Scholar 

  • Calkins, J. O., Umasankar, Y., O’Neill, H., Ramasamy, R. P. 2013. High photoelectrochemical activity of thylakoid–carbon nanotube composites for photosynthetic energy conversion. Energy Environ. Sci. 6:1891–1900.

    Article  CAS  Google Scholar 

  • Cereda, A., Hitchcock, A., Symes, M. D., Cronin, L., Bibby, T. S., Jones, A. K. 2014. A bioelectrochemical approach to characterize extracellular electron transfer by Synechocystis sp. PCC6803. PLoS ONE 9, e91484.

    Article  PubMed  PubMed Central  Google Scholar 

  • Efrati, A., Lu, C.-H., Michaeli, D., Nechushtai, R., Alsaoub, S., Schuhmann, W., Willner, I. 2016. Assembly of photo-bioelectrochemical cells using photosystem I-functionalized electrodes. Nat. Energy 1:15021.

    Article  CAS  Google Scholar 

  • Efrati, A., Tel-Vered, R., Michaeli, D., Nechushtai, R., Willner, I. 2013. Cytochrome c-coupled photosystem I and photosystem II (PSI/PSII) photobioelectrochemical cells. Energy Environ. Sci. 6:2950–2956.

    Article  CAS  Google Scholar 

  • Gizzie, E. A., Niezgoda, J. S., Robinson, M. T., Harris, A. G., Jennings, G. K., Rosenthal, S. J., Cliffel, D. E. 2015. Photosystem I-polyaniline/TiO2 solid-state solar cells: simple devices for biohybrid solar energy conversion. Energy Environ. Sci. 8:3572–3576.

    Article  CAS  Google Scholar 

  • Larom, S., Kallmann, D., Saper, G., Pinhassi, R., Rothschild, A., Dotan, H., Ankonina, G., Schuster, G., Adir, N. 2015. The Photosystem II D1-K238E mutation enhances electrical current production using cyanobacterial thylakoid membranes in a biophotoelectrochemical cell. Photosynth. Res. 126:161–169.

    Article  CAS  PubMed  Google Scholar 

  • Larom, S., Salama, F., Schuster, G., Adir, N. 2010. Engineering of an alternative electron transfer path in photosystem II. Proc. Natl Acad. Sci. USA 107:9650–9655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Cann, A. F., Liao, J. C. 2010. Biofuels: Biomolecular Engineering Fundamentals and Advances. Annu. Rev. Chem. Biomol. Eng. 1:19–36.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Feng, X., Fei, J., Cai, P., Huang, J., Li, J. 2016. Integrating photosystem II into a porous TiO2 nanotube network toward highly efficient photo-bioelectrochemical cells. J. Mater. Chem. A 4:12197–12204.

    Article  CAS  Google Scholar 

  • McCormick, A. J., Bombelli, P., Scott, A. M., Philips, A. J., Smith, A. G., Fisher, A. C., Howe, C. J. 2011. Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy Environ. Sci. 4:4699–4709.

    Article  CAS  Google Scholar 

  • McCormick, A. J., Bombelli, P., Bradley, R. W., Thorne, R., Wenzel, T., Howe, C. J. 2015. Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci. 8:1092–1109.

    Article  CAS  Google Scholar 

  • McCormick, A. J., Bombelli, P., Lea-Smith, D. J., Bradley, R. W., Scott, A. M., Fisher, A. C., Smith, A. G., Howe, C. J. 2013. Hydrogen production through oxygenic photosynthesis using the cyanobacterium Synechocystis sp. PCC 6803 in a biophotoelectrolysis cell (BPE) system. Energy Environ. Sci. 6:2682–2690.

    Article  CAS  Google Scholar 

  • Mershin, A., Matsumoto, K., Kaiser, L., Yu, D., Vaughn, M., Nazeeruddin, M. K., Bruce, B. D., Graetzel, M., Zhang, S. 2012. Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. Sci. Rep. 2:234.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinhassi, R. I., Kallmann, D., Saper, G., Dotan, H., Linkov, A., Kay, A., Liveanu, V., Schuster, G., Adir, N., Rothschild, A. 2016. Hybrid bio-photo-electro-chemical cells for solar water splitting. Nat. Commun. 7:12552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinhassi, R. I., Kallmann, D., Saper, G., Larom, S., Linkov, A., Boulouis, A., Schöttler, M.-A., Bock, R., Rothschild, A., Adir, N., Schuster, G. 2015. Photosynthetic membranes of Synechocystis or plants convert sunlight to photocurrent through different pathways due to different architectures. PLoS ONE 10, e0122616.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saper, G., Kallmann, D., Conzuelo, F., Zhao, F., Tóth, T. N., Liveanu, V., Meir, S., Szymanski, J., Aharoni, A., Schuhmann, W., Rothschild, A., Schuster, G., Adir, N. 2018. Live cyanobacteria produce photocurrent and hydrogen using both the respiratory and photosynthetic systems. Nat. Commun. 9:2168. https://doi.org/10.1038/s41467-018-04613-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawa, M., Fantuzzi, A., Bombelli, P., Howe, C. J., Nixon, K. H. P. J. 2017. Electricity generation from digitally printed cyanobacteria. Nat. Commun. 8:1327.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekar, N., Jain, R., Yan, Y., Ramasamy, R. P. 2016. Enhanced photobioelectrochemical energy conversion by genetically engineered cyanobacteria. Biotechnol. Bioeng. 113:675–679.

    Article  CAS  PubMed  Google Scholar 

  • Sekar, N., Umasankar, Y., Ramasamy, R. P. 2014. Photocurrent generation by immobilized cyanobacteria via direct electron transport in photobioelectrochemical cells. Phys. Chem. Chem. Phys. 16:7862.

    Article  CAS  PubMed  Google Scholar 

  • Wei, X., Lee, H., Choi, S. 2016. Biopower generation in a microfluidic bio-solar panel. Sens. Actuators B Chem. 228:151–155.

    Article  CAS  Google Scholar 

  • Yao, D. C. I., Brune, D. C., Vermaas, W. F. J. 2012. Lifetimes of photosystem I and II proteins in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 586:169–173.

    Article  CAS  PubMed  Google Scholar 

  • Yehezkeli, O., Tel-Vered, R., Wasserman, J., Trifonov, A., Michaeli, D., Nechushtai, R., Willner, I. 2012. Integrated photosystem II-based photo-bioelectrochemical cells. Nat. Commun. 3:742.

    Article  PubMed  Google Scholar 

  • Zhao, F., Sliozberg, K., Rögner, M., Plumeré, N., Schuhmann, W. 2014. The role of hydrophobicity of Os-complex-modified polymers for photosystem 1 based photocathodes. J. Electrochem. Soc. 161:H3035–H3041.

    Article  Google Scholar 

  • Zhao, F., Conzuelo, F., Hartmann, V., Li, H., Nowaczyk, M. M., Plumeré, N., Rögner, M., Schuhmann, W. 2015. Light induced H2 evolution from a biophotocathode based on photosystem 1–Pt nanoparticles complexes integrated in solvated redox polymers films. J. Phys. Chem. B 119:13726–13731.

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Baker, J. R., Gamberger, D., Mihelcic, J. R., Sabljić, A. 2004. Evaluation of artificial intelligence based models for chemical biodegradability prediction. Molecules 9:989–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boethling, R. S., Lynch, D. G., Jaworska, J. S., Tunkel, J. L., Thom, G. C., Webb, S. 2004. Using BIOWIN™, bayes and batteries to predict ready biodegradability. Environ. Toxicol. Chem. 23:911–920.

    Article  CAS  PubMed  Google Scholar 

  • Boethling, R. S., Lynch, D. G., Thom, G. C. 2003. Predicting ready biodegradability of premanufacture notice chemicals. Environ. Toxicol. Chem. 22:837–844.

    Article  CAS  PubMed  Google Scholar 

  • Cokesa, Z., Knackmuss, H.-J., Rieger, P.-G. 2004. Biodegradation of all stereoisomers of the EDTA substitute iminodisuccinate by Agrobacterium tumefaciens BY6 requires an epimerase and a stereoselective C-N lyase. Appl. Environ. Microbiol. 70:3941–3947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Maagd, R. A., Bravo, A., Crickmore, N. 2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. TRENDS in Genetics 17:193–199.

    Article  PubMed  Google Scholar 

  • DIN EN ISO 14040: Umweltmangement—Ökobilanz—Grundsätze und Rahmenbedingungen; Deutsche und Englische Fassung EN ISO 14040:2009–11.

    Google Scholar 

  • DIN EN ISO 14044: Umweltmangement—Ökobilanz—Anforderungen und Anleitungen; Deutsche und Englische Fassung EN ISO 14044:2006–10.

    Google Scholar 

  • Eilks, J., Ralle, B., Krahl, J., Ondruschka, B., Bahadir, M. 2003. Biodiesel—eine Betrachtung aus technisch-chemischer Sicht. In: Green Chemistry—Nachhaltigkeit in der Chemie. (Gesellschaft Deutscher Chemiker, Hrsg.) Wiley-VCH, Weinheim, S. 39–54.

    Google Scholar 

  • Fritsche, W. 1998. Umwelt-Mikrobiologie. Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Fritsche, W. 2002. Mikrobiologie. 3. Aufl. Spektrum Akademischer Verlag Heidelberg.

    Google Scholar 

  • Holmes, D. E., Nicoll, J. S., Bond, D. R., Lovley, D. R. 2004. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl. Environ. Microbiol. 70:6023–6030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppenheidt, K., Mücke, W., Peche, R., Tronecker, D., Roth, U., Würdinger, E., Hottenroth, S., Rommel, W. 2005. Entlastungseffekte für die Umwelt durch Substitution konventioneller chemisch-technischer Prozesse und Produkte durch biotechnische Verfahren. 2005. Forschungsbericht 07/05 im Auftrage des Umweltbundesamtes.

    Google Scholar 

  • Katz, E., Shipway, A. N., Willner, I. 2003. Biochemical fuel cells. In: Handbook of Fuel Cells—Fundamentals, Technology and Applications, W. Vielstich, H. A. Gasteiger, A. Lamm (eds.). Vol. 1: Fundamentals and Survey of Systems. John Wiley & Sons, Ltd., Chap. 21: pp. 1–26.

    Google Scholar 

  • Liu, H., Grot, S., Logan, B. E. 2005. Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol. 39:4317–4320.

    Article  CAS  PubMed  Google Scholar 

  • Logan, B. E. 2004. Extracting hydrogen and electricity from renewable resources. Environ. Sci. Technol. 38:160A–167A.

    Article  CAS  PubMed  Google Scholar 

  • Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., Rabaey, K. 2006. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 40:5181–5192.

    Article  CAS  PubMed  Google Scholar 

  • Lovley, D. R. 2006. Microbial energizers: Fuel cells that keep on going. Microbe 1:323–329.

    Google Scholar 

  • Peijnenburg, W. J. G. M., Damborsky, J. 1996. Biodegradability prediction. Kluwer Academic Publ., Dordrecht.

    Book  Google Scholar 

  • Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., Lovley, D. R. 2005. Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101.

    Article  CAS  PubMed  Google Scholar 

  • Reguera, G., Nevin, K. P., Nicoll, J. S., Covalla, S. F., Woodard, T. L., Lovley, D. R. 2006. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 72:7345–7348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieger, P.-G., Meier, H.-M., Gerle, M., Vogt, U., Groth, T., Knackmuss, H.-J. 2002. Xenobiotics in the environment: present and future strategies to obviate the problem of biological persistence. J. Biotechnol. 94:101–123.

    Article  CAS  PubMed  Google Scholar 

  • Rorije, E., Peijnenburg, W. J. G. M., Klopman, G. 1998. Structural requirements for anaerobic biodegradation of organic chemicals: A fragment model analysis. Environ. Toxicol. Chem. 17:1943–1950.

    Article  CAS  Google Scholar 

  • Schmetterer, G., Alge, D., Gregor, W. 1994. Deletion of cytochrome c oxidase genes from the cyanobacterium Synechocystis sp. PCC6803: Evidence for alternative respiratory pathways. Photosynth. Res. 42:43–50.

    Article  CAS  PubMed  Google Scholar 

  • Schmutterer, H., Huber, J. 2005. Natürliche Schädlingsbekämpfungsmittel. Eugen Ulmer Verlag, Stuttgart.

    Google Scholar 

  • Tunkel, J., Howard, P.H., Boethling, R.S., Stiteler, W., Loonen, H. 2000. Predicting ready biodegradability in the Japanese Ministry of International Trade and Industry Test. Environ. Toxicol. Chem. 19:2478–2485.

    Article  CAS  Google Scholar 

  • Zhang, L., Toscano Selão, T., Pisareva, T., Qian, J., Sze, S. K., Carlberg, I., Norling, B. 2013. Deletion of Synechocystis sp. PCC 6803 leader peptidase LepB1 affects photosynthetic complexes and respiration. Mol. Cell. Proteom. 12:1192–1203.

    Article  CAS  Google Scholar 

  • Weiße Biotechnologie: Chancen für Deutschland. 2004. Positionspapier der DECHEMA e. V.

    Google Scholar 

  • Download für EPI Suite: http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm.

  • Informationen zu Baculoviren: http://www.ncbi.nlm.nih.gov/ICTVdb/Ictv/fs_bacul.htm.

  • SMILES (simplified molecular-input line-entry system) Tutorial: http://www.epa.gov/med/Prods_Pubs/smiles.htm.

  • SMILES lassen sich leicht erzeugen mit Hilfe von PubChem Sketcher V2.4: http://pubchem.ncbi.nlm.nih.gov/edit2/index.html.

  • MITI-Daten sind verfügbar unter: http://www.cerij.or.jp/ceri_en/otoiawase/otoiawase_menu.html, dann Go to “Public Information Data”, then “BIODEGRADATION AND BIO ACCUMULATION DATA OF EXISTING CHEMICALS”.

  • Studie zu Biokraftstoffen von Festel Capital: gunter.festel@festel.com.

  • Fachagentur Nachwachsende Rohstoffe: www.biokraftstoffe-info.de.

  • Biokraftstoffe: http://www.fnr-server.de/cms35/Biokraftstoffe.817.0.html.

  • EU-Strategie für Biokraftstoffe: http://europa.eu.int/comm/agriculture/biomass/biofuel/index_en.htm.

  • Weltweit Biokraftstoffe: http://www.oecd.org/site/oecd-faoagriculturaloutlook/biofuelproduction2010-19.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Reineke .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reineke, W., Schlömann, M. (2023). Biotechnology and Environmental Protection. In: Environmental Microbiology. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-66547-3_18

Download citation

Publish with us

Policies and ethics