Skip to main content

Zerebrale Oxymetrie/Nahinfrarotspektroskopie

  • Chapter
  • First Online:
Neuromonitoring in der Intensivmedizin
  • 498 Accesses

Zusammenfassung

Systeme der Nahinfrarotspektroskopie (NIRS) des Hirnparenchyms werden heute durch eine Vielzahl von Herstellern angeboten und lassen sich meist ohne großen technischen und Schulungsaufwand einsetzen. Unter Kenntnis des zugrunde liegenden Messprinzips und einiger Fehlerquellen handelt es sich um ein sehr nützliches, anwenderfreundliches Verfahren der Hirnzustandserfassung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Thavasothy M, Broadhead M, Elwell C, Peters M, Smith M. A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 near-infrared spectrophotometers. Anaesthesia. 2002;57:999–1006.

    Article  CAS  PubMed  Google Scholar 

  2. Pattinson KT, Imray CH, Wright AD. What does cerebral oximetry measure? Br J Anaesth. 2005;94:863; author reply -4.

    Article  CAS  PubMed  Google Scholar 

  3. Yoshitani K, Kawaguchi M, Miura N, et al. Effects of hemoglobin concentration, skull thickness, and the area of the cerebrospinal fluid layer on near-infrared spectroscopy measurements. Anesthesiology. 2007;106:458–62.

    Article  PubMed  Google Scholar 

  4. Cooper RJ, Selb J, Gagnon L, et al. A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy. Front Neurosci. 2012;6:147.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bickler P, Feiner J, Rollins M, Meng L. Tissue oximetry and clinical outcomes. Anesth Analg. 2017;124:72–82.

    Article  PubMed  Google Scholar 

  6. Weigl W, Milej D, Janusek D, et al. Application of optical methods in the monitoring of traumatic brain injury: a review. J Cereb Blood Flow Metab. 2016;36:1825–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dunham CM, Sosnowski C, Porter JM, Siegal J, Kohli C. Correlation of noninvasive cerebral oximetry with cerebral perfusion in the severe head injured patient: a pilot study. J Trauma. 2002;52:40–6.

    PubMed  Google Scholar 

  8. Moerman A, De Hert S. Recent advances in cerebral oximetry. Assessment of cerebral autoregulation with near-infrared spectroscopy: myth or reality? F1000Research. 2017;6:1615.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Steppan J, Hogue CW Jr. Cerebral and tissue oximetry. Best Pract Res Clin Anaesthesiol. 2014;28:429–39.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Budohoski KP, Czosnyka M, de Riva N, et al. The relationship between cerebral blood flow autoregulation and cerebrovascular pressure reactivity after traumatic brain injury. Neurosurgery. 2012;71:652–60; discussion 60–61.

    Article  PubMed  Google Scholar 

  11. Rivera-Lara L, Geocadin R, Zorrilla-Vaca A, et al. Validation of near-infrared spectroscopy for monitoring cerebral autoregulation in comatose patients. Neurocrit Care. 2017;27:362–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Healy RJ, Zorrilla-Vaca A, Ziai W, et al. Glasgow coma scale score fluctuations are inversely associated with a NIRS-based index of cerebral autoregulation in acutely comatose patients. J Neurosurg Anesthesiol. 2019;31:306–10.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kahraman S, Kayali H, Atabey C, Acar F, Gocmen S. The accuracy of near-infrared spectroscopy in detection of subdural and epidural hematomas. J Trauma. 2006;61:1480–3.

    Article  PubMed  Google Scholar 

  14. Schober P, Bossers SM, Schwarte LA. Intracranial hematoma detection by near infrared spectroscopy in a helicopter emergency medical service: practical experience. Biomed Res Int. 2017;2017:1846830.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bressan S, Daverio M, Martinolli F, et al. The use of handheld near-infrared device (Infrascanner) for detecting intracranial haemorrhages in children with minor head injury. Child’s Nerv Syst ChNS. 2014;30:477–84.

    Article  PubMed  Google Scholar 

  16. Ahn A, Nasir A, Malik H, D’Orazi F, Parnia S. A pilot study examining the role of regional cerebral oxygen saturation monitoring as a marker of return of spontaneous circulation in shockable (VF/VT) and non-shockable (PEA/Asystole) causes of cardiac arrest. Resuscitation. 2013;84:1713–6.

    Article  PubMed  Google Scholar 

  17. Asim K, Gokhan E, Ozlem B, et al. Near infrared spectrophotometry (cerebral oximetry) in predicting the return of spontaneous circulation in out-of-hospital cardiac arrest. Am J Emerg Med. 2014;32:14–7.

    Article  PubMed  Google Scholar 

  18. Yagi T, Nagao K, Kawamorita T, et al. Detection of ROSC in patients with cardiac arrest during chest compression using NIRS: a pilot study. Adv Exp Med Biol. 2016;876:151–7.

    Article  CAS  PubMed  Google Scholar 

  19. Alosh H, Ramirez A, Mink R. The correlation between brain near-infrared spectroscopy and cerebral blood flow in piglets with intracranial hypertension. J Appl Physiol. 2016;121:255–60.

    Article  CAS  PubMed  Google Scholar 

  20. Zweifel C, Castellani G, Czosnyka M, et al. Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients. J Neurotrauma. 2010;27:1951–8.

    Article  PubMed  Google Scholar 

  21. Mathiesen C, Caesar K, Akgoren N, Lauritzen M. Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J Physiol. 1998;512(Pt 2):555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hibino S, Mase M, Shirataki T, et al. Oxyhemoglobin changes during cognitive rehabilitation after traumatic brain injury using near infrared spectroscopy. Neurol Med Chir. 2013;53:299–303.

    Article  Google Scholar 

  23. Chiarelli AM, Zappasodi F, Di Pompeo F, Merla A. Simultaneous functional near-infrared spectroscopy and electroencephalography for monitoring of human brain activity and oxygenation: a review. Neurophotonics. 2017;4:041411.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vinciguerra L, Bosel J. Noninvasive neuromonitoring: current utility in subarachnoid hemorrhage, traumatic brain injury, and stroke. Neurocrit Care. 2017;27:122–40.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars-Olav Harnisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harnisch, LO. (2023). Zerebrale Oxymetrie/Nahinfrarotspektroskopie. In: Harnisch, LO., Mörer, O., Stephani, C. (eds) Neuromonitoring in der Intensivmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65998-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-65998-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-65997-7

  • Online ISBN: 978-3-662-65998-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics