Skip to main content

A Very Brief History of Cosmology and Galaxy Formation

  • Chapter
  • First Online:
Galaxy Formation

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 844 Accesses

Summary

This book begins with a brief overview of the historical development of key observations and theoretical developments in cosmology and galaxy formation from the time of the Galilean revolution to the present day. The realisation that we live in one of billions of galaxies which populate the Universe was established in the 1920s, followed by Hubble’s discovery of the recession of the spiral nebulae and Hubble’s law. The theory to account for these observations was pioneered by Friedman, Lemaître and Robertson and led to the standard Big Bang models of the Universe, which was strongly supported by the discovery of the cosmic microwave background radiation (CMB) in 1965. Within this framework, the theory of galaxy formation was worked out and led to the standard ΛCDM model of the Universe. The detailed observation of the power spectrum of the CMB resulted in precise values of cosmological parameters, in agreement with observations in other wavebands. These understandings lead to problems which may be resolved by studies of the very early Universe. These topics are discussed in detail in the succeeding chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht, A., & Steinhardt, P. (1982). Cosmology for grand unified theories with radiatively induced symmetry breaking. Physical Review Letters, 48, 1220–1223.

    Article  ADS  Google Scholar 

  • Alpher, R. A., & Herman, R. C. (1948). Evolution of the Universe. Nature, 162, 774–775.

    Article  ADS  Google Scholar 

  • Alpher, R. A., & Herman, R. C. (1950). Theory of the origin and relative distribution of the elements. Reviews of Modern Physics, 22, 153–212.

    Article  ADS  MATH  Google Scholar 

  • Bennett, C., Halpern, M., Hinshaw, G., et al. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results. The Astrophysical Journal Supplement Series, 148, 1–27.

    Article  ADS  Google Scholar 

  • Bolyai, J. (1832). Appendix: Scientiam spatii absolute veritam exhibens (Appendix explaining the absolutely true science of space). An attempt to introduce studious youth to the elements of pure mathematics. Maros Vásárhely. Published as an appendix to the essay by his father F. Bolyai.

    Google Scholar 

  • Burbidge, E., Burbidge, G., Fowler, W., & Hoyle, F. (1957). Synthesis of the elements in stars. Reviews of Modern Physics, 29, 547–650.

    Article  ADS  Google Scholar 

  • de Sitter, W. (1917). On Einstein’s theory of gravitation and its astronomical consequences. Monthly Notices of the Royal Astronomical Society, 78, 3–28.

    Article  ADS  Google Scholar 

  • Dicke, R. (1961). Dirac’s cosmology and Mach’s principle. Nature, 192, 440–441.

    Article  ADS  MATH  Google Scholar 

  • Dicke, R., & Peebles, P. (1979). Big bang cosmology – enigmas and nostrums. In S. Hawking, & W. Israel (Eds.), General relativity: An Einstein centenary survey (pp. 504–517). Cambridge University Press.

    Google Scholar 

  • Doroshkevich, A., Sunyaev, R., & Zeldovich, Y. (1974). The formation of galaxies in Friedmannian universes. In M. Longair (Ed.), Confrontation of cosmological theories with observational data, (IAU symposium No. 63) (pp. 213–225). D. Reidel Publishing Company.

    Google Scholar 

  • Doroshkevich, A., Zeldovich, Y., Sunyaev, R., & Khlopov, M. (1980). Astrophysical implications of the neutrino rest mass: Part II. The density-perturbation spectrum and small-scale fluctuations in the Microwave Background. Pis’ma v Astronomicheskii Zhurnal, 6, 457–464.

    ADS  Google Scholar 

  • Einstein, A. (1915). Die Feldgleichung der Gravitation (The field equations of gravitation). Sitzungsberichte, Königlich Preussische Akademie der Wissenschaften (Berlin), II, 844–847.

    Google Scholar 

  • Einstein, A. (1916). Die Grundlage der Allgemeinen Relativitätstheorie (The foundation of the general theory of relativity). Annalen der Physik, 49, 769–822.

    Article  ADS  MATH  Google Scholar 

  • Einstein, A. (1917). Kosmologische Betrachtungen zur Allgemeinen Relativitätstheorie (Cosmological considerations in the general theory of relativity). Sitzungsberichte, Königlich Preussische Akademie der Wissenschaften (Berlin), I, 142–152.

    Google Scholar 

  • Einstein, A. (1919). Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine wesentliche Rolle? (Do gravitational fields play a significant role for the structure of elementary particles). Sitzungsberichte, Königlich Preussische Akademie der Wissenschaften, Part 1, 349–356.

    Google Scholar 

  • Fixsen, D., Cheng, E., Gales, J., et al. (1996). The Cosmic Microwave Background spectrum from the full COBE FIRAS data set. The Astrophysical Journal, 473, 576–587.

    Article  ADS  Google Scholar 

  • Frenk, C. (1986). Galaxy clustering and the dark-matter problem. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, A320, 517–541.

    ADS  Google Scholar 

  • Friedman, A. A. (1922). On the curvature of space. Zeitschrift für Physik, 10, 377–386.

    Article  ADS  Google Scholar 

  • Friedman, A. A. (1924). On the possibility of a world with constant negative curvature. Zeitschrift für Physik, 12, 326–332.

    ADS  Google Scholar 

  • Gamow, G. (1970). My world line. Viking Press. The reference to Einstein’s admission of ‘the greatest blunder of my life’ is on page 44.

    Google Scholar 

  • Gershtein, S., & Zeldovich, Y. (1966). Rest mass of a muonic neutrino and cosmology. Pis’ma Zhurnal Èksperimental’noi i Teoreticheskoi Fiziki, 4, 174–177.

    Google Scholar 

  • Gibbons, G. W., & Hawking, S. W. (1977). Cosmological event horizons, thermodynamics, and particle creation. Physical Review, D15, 2738–2751.

    ADS  MathSciNet  Google Scholar 

  • Gibbons, G. W., Hawking, S. W., & Siklos, S. T. C. (Eds.) (1983). The Very Early Universe: Proceedings of the Nuffield Workshop, Cambridge, UK, June 21 - July 9, 1982. Cambridge University Press.

    Google Scholar 

  • Gregory, J. (1668). Geometriae pars universalis. Padua.

    Google Scholar 

  • Guth, A. (1981). Inflationary Universe: A possible solution to the horizon and flatness problems. Physical Review, D23, 347–356.

    ADS  MATH  Google Scholar 

  • Harrison, E. (1970). Fluctuations at the threshold of classical cosmology. Physical Review, D1, 2726–2730.

    ADS  Google Scholar 

  • Harrison, E. R. (1987). Darkness at night: A riddle of the Universe. Cambridge University Press.

    Google Scholar 

  • Herschel, W. (1785). On the construction of the heavens. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 75, 213–268.

    Google Scholar 

  • Herschel, W. (1802). Catalogue of 500 new nebulae, nebulous stars, planetary nebulae, and clusters of stars; with remarks on the construction of the heavens. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 92, 477–528.

    ADS  Google Scholar 

  • Hoskin, M. A. (1976). The ‘Great Debate’: What really happened. Journal for the History of Astronomy, 7, 169–182.

    Article  ADS  Google Scholar 

  • Hoyle, F. (1954). On nuclear reactions occurring in very hot stars. I: The synthesis of elements from carbon to nickel. The Astrophysical Journal Supplement Series, 1, 121–146.

    Article  ADS  Google Scholar 

  • Hoyle, F., & Tayler, R. (1964). The mystery of the cosmic helium abundance. Nature, 203, 1108–1110.

    Article  ADS  Google Scholar 

  • Hubble, E. P. (1926). Extra-galactic nebulae. The Astrophysical Journal, 64, 321–369.

    Article  ADS  Google Scholar 

  • Hubble, E. P. (1929). A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the National Academy of Sciences, 15, 168–173.

    Google Scholar 

  • Hubble, E. P., & Humason, M. (1934). The velocity–distance relation among extra-galactic nebulae. The Astrophysical Journal, 74, 43–80.

    Article  ADS  Google Scholar 

  • Huggins, W., & Miller, W. A. (1864). On the spectra of some of the nebulae: A supplement to the paper “on the spectra of some fixed stars. Philosophical Transactions of the Royal Society, 154, 437–444.

    Article  ADS  Google Scholar 

  • Jeans, J. (1902). The stability of a spherical nebula. Philosophical Transactions of the Royal Society, 199, 1–53.

    ADS  MATH  Google Scholar 

  • Kapteyn, J. C. (1922). First attempt at a theory of the arrangement and motion of the sidereal system. The Astrophysical Journal, 55, 302–328.

    Article  ADS  Google Scholar 

  • Knop, R., Aldering, G., Amanullah, R., et al. (2003). New constraints on Ω M, Ω Λ, and w from an independent set of 11 high-redshift supernovae observed with the Hubble Space Telescope. The Astrophysical Journal, 598, 102–137.

    Article  ADS  Google Scholar 

  • Kompaneets, A. (1956). The establishment of thermal equilibrium between quanta and electrons. Zhurnal Èksperimental’noi i Teoreticheskoi Fiziki, 31, 876–885. (English translation: Soviet Physics, 4, 730–737 (1957)).

    Google Scholar 

  • Kragh, H., & Longair, M. (Eds.) (2019). The Oxford handbook of the history of modern cosmology. Oxford University Press.

    Google Scholar 

  • Leavitt, H. S. (1912). Periods of 25 variable stars in the Small Magellanic Cloud. Harvard College Observatory Circular, 173, 1–2.

    ADS  Google Scholar 

  • Lemaître, G. (1927). A homogeneous Universe of constant mass and increasing radius, accounting for the radial velocity of extra-galactic nebulae. Annales de la Société Scientifique de Bruxelles, A47, 29–39. Translation: Monthly Notices of the Royal Astronomical Society, 91, 483–490 (1931).

    Google Scholar 

  • Lemaître, G. (1933). Spherical condensations in the expanding Universe. Comptes Rendus de L’Academie des Sciences de Paris, 196, 903–904.

    MATH  Google Scholar 

  • Liddle, A. R., & Lyth, D. (2000). Cosmological inflation and large-scale structure. Cambridge University Press.

    Book  MATH  Google Scholar 

  • Lifshitz, E. (1946). On the gravitational stability of the expanding Universe. Journal of physics USSR, 10, 116–129.

    MathSciNet  MATH  Google Scholar 

  • Linde, A. (1982). A new inflationary Universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Physics Letters B, 108, 389–393.

    Article  ADS  Google Scholar 

  • Linde, A. (1983). Chaotic inflation. Physics Letters B, 129, 177–181.

    Article  ADS  Google Scholar 

  • Lobachevsky, N. I. (1829). On the principles of geometry. Kazanski Vestnik.

    Google Scholar 

  • Lobachevsky, N. I. (1830). On the principles of geometry. Kazanski Vestnik.

    Google Scholar 

  • Longair, M. S. (1966). On the interpretation of radio source counts. Monthly Notices of the Royal Astronomical Society, 133, 421–436.

    Article  ADS  Google Scholar 

  • Longair, M. S. (2020). Theoretical concepts in physics: An alternative view of theoretical reasoning in physics (3rd ed.). Cambridge University Press.

    Book  MATH  Google Scholar 

  • Lyubimov, V., Novikov, E., Nozik, V., et al. (1980). An estimate of the ν e mass from the β-spectrum of tritium in the valine molecule. Physics Letters, 138, 30–56.

    Google Scholar 

  • Marx, G., & Szalay, A. (1972). Cosmological limit on neutretto mass. In Neutrino ’72 (Vol. 1, pp. 191–195). Technoinform.

    Google Scholar 

  • Michell, J. (1767). An inquiry into the probable parallax, and magnitude of the fixed stars, from the quantity of light which they afford us, and the particular circumstances of their situation. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 57, 234–264.

    Google Scholar 

  • Novikov, I. (1964). On the possibility of appearance of large scale inhomogeneities in the expanding Universe. Zhurnal Èksperimental’noi i Teoreticheskoi Fiziki, 46, 686–689.

    Google Scholar 

  • Partridge, R. (1980a). Flucutations in the Cosmic Microwave Background radiation at small angular scales. Physica Scripta, 21, 624–629.

    Article  ADS  Google Scholar 

  • Partridge, R. (1980b). New limits on small-scale angular fluctuations in the Cosmic Microwave Background. The Astrophysical Journal, 235, 681–687.

    Article  ADS  Google Scholar 

  • Partridge, R. B. (2019). The Cosmic Microwave Background: from discovery to precision cosmology. In H. Kragh, & M. Longair (Eds.), The Oxford handbook of the history of modern cosmology, pp. 292–345. Oxford University Press.

    Google Scholar 

  • Peebles, P. (1982). Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations. The Astrophysical Journal, 263, L1–L5.

    Article  ADS  Google Scholar 

  • Penzias, A. A., & Wilson, R. W. (1965). A measurement of excess antenna temperature at 4080 MHz. The Astrophysical Journal, 142, 419–421.

    Article  ADS  Google Scholar 

  • Planck Collaboration, Aghanim, N., Akrami, Y., Arroja, F., et al. (2020a). Planck 2018 results. I: Overview and the cosmological legacy of Planck. Astronomy & Astrophysics, 641, A1. https://doi.org/10.1051/0004-6361/201833880

  • Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., et al. (2020b). Planck 2018 results. VI: Cosmological parameters. Astronomy & Astrophysics, 641, A6. https://doi.org/10.1051/0004-6361/201833910

  • Ryle, M. (1955). Radio stars and their cosmological significance. The Observatory, 75, 137–147.

    ADS  Google Scholar 

  • Ryle, M. (1958). The nature of the cosmic radio sources. Proceedings of the Royal Society A, 248, 289–308.

    Google Scholar 

  • Sachs, R., & Wolfe, A. (1967). Perturbations of a cosmological model and angular variations in the Microwave Background. The Astrophysical Journal, 147, 73–90.

    Article  ADS  Google Scholar 

  • Sakharov, A. (1967). Violation of CP invariance, C asymmetry, and baryon asymmetry of the Universe. Pis’ma v Zhurnal Èksperimental’noi i Teoreticheskoi Fiziki, 5, 32–35.

    Google Scholar 

  • Shapley, H. (1918). Studies based on the colors and magnitudes in stellar clusters. VII: The distances, distribution in space, and dimensions of 60 globular clusters. The Astrophysical Journal, 48, 154–181.

    Article  ADS  Google Scholar 

  • Silk, J. (1968). Cosmic black-body radiation and galaxy formation. The Astrophysical Journal, 151, 459–471.

    Article  ADS  Google Scholar 

  • Smith, R. W. (1982). The expanding Universe: Astronomy’s ‘Great Debate’ 1900–1931. Cambridge University Press.

    MATH  Google Scholar 

  • Smoot, G., Bennett, C., Kogut, A., et al. (1992). Structure in the COBE differential microwave radiometer first-year maps. The Astrophysical Journal, 396, L1–L5.

    Article  ADS  Google Scholar 

  • Sunyaev, R., & Zeldovich, Y. (1970). Small-scale fluctuations of relic radiation. Astrophysics and Space Science, 7, 3–19.

    Article  ADS  Google Scholar 

  • Tolman, R. (1934). Effect of inhomogeneity on cosmological models. Proceedings of the National Academy of Sciences, 20, 169–176.

    Google Scholar 

  • Tonry, J., Schmidt, B.P., Barris, B., et al. (2003). Cosmological results from high-z supernovae. The Astrophysical Journal, 594, 1–24.

    Article  ADS  Google Scholar 

  • Tremaine, S., & Gunn, J. (1979). Dynamical role of light neutral leptons in cosmology. Physical Review Letters, 42, 407–410.

    Article  ADS  Google Scholar 

  • Trimble, V. (1995). The 1920 Shapley-Curtis discussion: Background, issues, and aftermath. Publications of the Astronomical Society of the Pacific, 107, 1133–1144.

    Article  ADS  Google Scholar 

  • Wagoner, R., Fowler, W., & Hoyle, F. (1967). On the synthesis of elements at very high temperatures. The Astrophysical Journal, 148, 3–49.

    Article  ADS  Google Scholar 

  • Weymann, R. (1966). The energy spectrum of radiation in the expanding Universe. The Astrophysical Journal, 145, 560–571.

    Article  ADS  Google Scholar 

  • Zeldovich, Y. (1965). Survey of modern cosmology. Advances of Astronomy and Astrophysics, 3, 241–379.

    Article  ADS  Google Scholar 

  • Zeldovich, Y. (1972). A hypothesis, unifying the structure and the entropy of the Universe. Monthly Notices of the Royal Astronomical Society, 160, 1P–3P.

    Article  ADS  Google Scholar 

  • Zeldovich, Y., & Sunyaev, R. (1969). The interaction of matter and radiation in a hot-model Universe. Astrophysics and Space Science, 4, 301–316.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Longair, M.S. (2023). A Very Brief History of Cosmology and Galaxy Formation. In: Galaxy Formation. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65891-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-65891-8_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-65890-1

  • Online ISBN: 978-3-662-65891-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics