Skip to main content

Developmental Neurobiology

  • Chapter
  • First Online:
Psychoneuroscience
  • 762 Accesses

Abstract

The brain perceives its environment, it feels, compares, infers and initiates and controls behaviour and language—and much more. How does all this arise from a single fertilized egg?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akers KG, Martinez-Canabal A, Restivo L, Yiu AP, De Cristofaro A, Hsiang HLL et al (2014) Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344(6184):598–602

    Article  CAS  PubMed  Google Scholar 

  • Bale TL (2015) Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 16(6):332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun K, Lange E, Metzger M, Poeggel G (2000) Maternal separation followed by early social deprivation affects the development of monoaminergic fiber systems in the medial prefrontal cortex of Octodon degus. Neuroscience 95:309–318

    Article  CAS  PubMed  Google Scholar 

  • Casey BJ, Tottenham N, Liston C, Durston S (2005) Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci 9(3):104–110

    Article  CAS  PubMed  Google Scholar 

  • Changeux J-P, Danchin A (1976) Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature 264:705–712

    Article  CAS  PubMed  Google Scholar 

  • Constantine-Paton M, Cline HT, Debski E (1990) Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu Rev Neurosci 13:129–154

    Article  CAS  PubMed  Google Scholar 

  • Croteau-Chonka EC, Dean DC III, Remer J, Dirks H, O’Muircheartaigh J, Deoni SC (2016) Examining the relationships between cortical maturation and white matter myelination throughout early childhood. NeuroImage 125:413–421

    Article  PubMed  Google Scholar 

  • Gogolla NP, Luthi CA, Herry C (2009) Perineuronal nets protect fear memories from erasure. Science 325(5945):1258–1261

    Article  CAS  PubMed  Google Scholar 

  • Greenough WT, Black JE, Wallace CS (1987) Experience and brain development. Child Dev 58:539–559

    Article  CAS  PubMed  Google Scholar 

  • Greifzu F, Pielecka-Fortuna J, Kalogeraki E, Krempler K, Favaro PD, Schlüter OM, Löwel S (2014) Environmental enrichment extends ocular dominance plasticity into adulthood and protects from stroke-induced impairments of plasticity. Proc Natl Acad Sci 111(3):1150–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunnar MR, Van Dulmen MH (2007) Behavior problems in postinstitutionalized internationally adopted children. Dev Psychopathol 19(1):129–148

    Article  PubMed  Google Scholar 

  • Harauzov A, Spolidoro M, DiCristo G, De Pasquale R, Cancedda L, Pizzorusso T et al (2010) Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J Neurosci 30(1):361–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York

    Google Scholar 

  • Heim C, Young LJ, Newport DJ, Mletzko T, Miller AH, Nemeroff CB (2009) Lower CSF oxytocin concentrations in women with a history of childhood abuse. Mol Psychiatry 14(10):954–958

    Article  CAS  PubMed  Google Scholar 

  • Hensch TK (2018) Critical periods in cortical development. In: Gibb R, Kolb B (eds) The neurobiology of brain and behavioral development. Academic, London, pp 133–151

    Chapter  Google Scholar 

  • Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson MH (2005) Sensitive periods in functional brain development: problems and prospects. Dev Psychobiol 46(3):287–292

    Article  PubMed  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI (2004) Sensitive periods in the development of the brain and behavior. J Cogn Neurosci 16(8):1412–1425

    Article  PubMed  Google Scholar 

  • Kumsta R, Heinrichs M (2013) Oxytocin, stress and social behavior: neurogenetics of the human oxytocin system. Curr Opin Neurobiol 23:11–16

    Article  CAS  PubMed  Google Scholar 

  • Li G, Lin W, Gilmore JH, Shen D (2015) Spatial patterns, longitudinal development, and hemispheric asymmetries of cortical thickness in infants from birth to 2 years of age. J Neurosci 35(24):9150–9162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyall AE, Shi F, Geng X, Woolson S, Li G, Wang L et al (2015) Dynamic development of regional cortical thickness and surface area in early childhood. Cereb Cortex 25(8):2204–2212

    Article  PubMed  Google Scholar 

  • Maurer D (2017) Critical periods re-examined: evidence from children treated for dense cataracts. Cogn Dev 42:27–36

    Article  Google Scholar 

  • Ray RD, Zald DH (2012) Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. Neurosci Biobehav Rev 36:479–501

    Article  PubMed  Google Scholar 

  • Roth G (2019) Warum es so schwierig ist, sich und andere zu ändern. Persönlichkeit, Entscheidung und Verhalten. Klett-Cotta, Stuttgart

    Google Scholar 

  • Roth G, Strüber N (2018) Wie das Gehirn die Seele macht. Klett-Cotta, Stuttgart

    Google Scholar 

  • Rutter M, Sonuga-Barke EJ, Beckett C, Castle J, Kreppner J, Kumsta R, et al (2010) Deprivation-specific psychological patterns: effects of institutional deprivation. Monographs of the Society for Research in Child Development, i–253

    Google Scholar 

  • Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, Greenstein D et al (2008) Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 28:3586–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silbereis JC, Pochareddy S, Zhu Y, Li M, Sestan N (2016) The cellular and molecular landscapes of the developing human central nervous system. Neuron 89(2):248–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer BYW (1990) The formation of cooperative cell assemblies in the visual cortex. J Exp Biol 153:177–197

    Article  CAS  PubMed  Google Scholar 

  • Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW (2004) Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 24:8223–8231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strüber N (2016) Die erste Bindung: wie Eltern die Entwicklung des kindlichen Gehirns prägen. Klett-Cotta, Stuttgart

    Google Scholar 

  • Strüber N (2019) Risiko Kindheit. Die Entwicklung des Gehirns verstehen und Resilienz fördern. Klett-Cotta, Stuttgart

    Google Scholar 

  • Strüber N, Roth G (2017) Infografik. So reift das Ich. Gehirn & Geist 7:12–19

    Google Scholar 

  • Szyf M (2015) Nongenetic inheritance and transgenerational epigenetics. Trends Mol Med 21(2):134–144

    Article  PubMed  Google Scholar 

  • Teicher MH, Samson JA, Anderson CM, Ohashi K (2016) The effects of childhood maltreatment on brain structure, function and connectivity. Nat Rev Neurosci 17(10):652

    Article  CAS  PubMed  Google Scholar 

  • The St. Petersburg-USA Orphanage Research Team (2008) The effects of early social emotional and relationship experience on the development of young orphanage children. Monogr Soc Res Child Dev 73(3):1–297

    Google Scholar 

  • Turkheimer E, Haley A, Waldron M, d’Onofrio B, Gottesman II (2003) Socioeconomic status modifies heritability of IQ in young children. Psychol Sci 14(6):623–628

    Article  PubMed  Google Scholar 

  • Vetencourt JFM, Sale A, Viegi A, Baroncelli L, De Pasquale R, O’leary O et al (2008) The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 320(5874):385–388

    Article  Google Scholar 

  • Walhovd KB, Fjell AM, Giedd J, Dale AM, Brown TT (2017) Through thick and thin: a need to reconcile contradictory results on trajectories in human cortical development. Cereb Cortex 27(2):1472–1481

    PubMed  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  • Werker JF, Hensch TK (2015) Critical periods in speech perception: new directions. Annu Rev Psychol 66:173–196

    Article  PubMed  Google Scholar 

  • Zeanah CH, Humphreys KL, Fox NA, Nelson CA (2017) Alternatives for abandoned children: insights from the Bucharest Early Intervention Project. Curr Opin Psychol 15:182–188

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Strüber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strüber, N., Roth, G. (2023). Developmental Neurobiology. In: Roth, G., Heinz, A., Walter, H. (eds) Psychoneuroscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65774-4_5

Download citation

Publish with us

Policies and ethics