Skip to main content

Cobaltgruppe: Elemente der neunten Nebengruppe

  • Chapter
  • First Online:
Handbuch der chemischen Elemente
  • 2031 Accesses

Zusammenfassung

Dieses Kapitel beschreibt die Eigenschaften, Vorkommen, Herstellverfahren und Anwendungen der Elemente der neunten Nebengruppe des Periodensystems (Cobalt, Rhodium, Iridium, Meitnerium) mit ihren wichtigsten Verbindungen. Cobalt wurde 1735 entdeckt, Rhodium und Iridium Anfang des 19. Jahrhunderts. 1982 konnten die ersten Atome des Meitneriums erzeugt werden.

Auch bei Rhodium und Iridium ist noch die Auswirkung der Lanthanoidenkontraktion zu beobachten. Die jeweiligen physikalischen Eigenschaften dieser zwei Elemente unterscheiden sich deutlich, kaum aber die chemischen. Die Eigenschaften des Cobalts dagegen weichen von denen der zwei „edlen“ Platinmetalle Rhodium und Iridium deutlich ab, so zeigt Cobalt ein negatives Normalpotenzial sowie niedrigere Dichten, Schmelz- und Siedepunkte. Bei Cobalt ist die Oxidationsstufe +2 die stabilste, bei Rhodium +3 und bei Iridium +4. Kürzlich gelang die Erzeugung von Iridium-VIII- und IX-Verbindungen.

Cobaltverbindungen finden schon lange Verwendung in hitzebeständigen Pigmenten sowie zur Bemalung von Porzellan und Keramik. Cobalt erhöht als Bestandteil von Stählen deren Verschleiß- und Hitzefestigkeit. Seine magnetischen Eigenschaften bedingen die Anwendung in Datenträgern.

Rhodium findet sich hauptsächlich in Katalysatoren und Schmuckgegenständen. Am Edelmetall Iridium stieg der weltweite Bedarf in den letzten Jahren deutlich, unter anderem bewirkt durch neue Produktionsverfahren der Elektronikindustrie. Es geht in Zündkerzen für in der Luft- und Raumfahrt verwendete Antriebsmotoren, außerdem in einige Katalysatoren für chemische Synthesen.

Meitnerium kommt nicht in der Natur vor und ist nur auf künstlichem Wege durch Kernfusion zugänglich.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Acres GJK, Swars K (2013) Pt Platinum supplement volume A 1 technology of platinum-group metals. Springer Science & Business Media, Dordrecht, S 71. ISBN 978-3-662-10278-7

    Google Scholar 

  • Albertini VR et al (2010) Superhard properties of rhodium and iridium boride films. ACS Appl Mater Interfaces 2(2):581–587. https://doi.org/10.1021/am9008264

    Article  CAS  PubMed  Google Scholar 

  • Almendra A (2002) Micro-Raman study of iridium silicides. J Raman Spectrosc 33(2):80–83. https://doi.org/10.1002/jrs.824

    Article  CAS  Google Scholar 

  • Alvarez LW et al (1980) Extraterrestrial cause for the cretaceous-tertiary extinction. Science 208(4448):1095–1108

    Article  CAS  PubMed  Google Scholar 

  • Anderson JB et al (1975) Crystal structure of cobalt orthophosphate Co3(PO4)2. J Solid State Chem 14:372–377

    Article  CAS  Google Scholar 

  • Arblaster JW (1989) Densities of osmium and iridium. Platin Met Rev 33(1):14–16

    CAS  Google Scholar 

  • Arblaster JW (1995) Osmium, the densest metal known. Platin Met Rev 39(4):164

    Google Scholar 

  • Barnett C (1969) Hydrogenation of aliphatic nitriles over transition metal borides. Ind Eng Chem Prod Res Dev 8(2):145–149. https://doi.org/10.1021/i360030a009

    Article  CAS  Google Scholar 

  • Bartlett N (1973) Crystal structure of rhodium pentafluoride. Inorg Chem 12(11):2640–2644. https://doi.org/10.1021/ic50129a029

    Article  Google Scholar 

  • Bartlett N, Rao PR (1965) Iridium pentafluoride. Chem Commun 12:252–253

    Google Scholar 

  • Bates CH et al (1966) The solubility of transition metal oxides in zinc oxide and the reflectance spectra of Mn2+ and Fe+ in tetrahedral fields. J Inorg Nucl Chem 28:397–405

    Article  CAS  Google Scholar 

  • Bennett MA, Longstaff PA (1965) Complexes of Rhodium(I) with Triphenylphosphine. Chem Ind 846

    Google Scholar 

  • Bennett MJ, Donaldson PB (1977) Crystal and molecular structure of the orange and red allotropes of chlorotris(triphenylphosphine)rhodium(I). Inorg Chem 16(3):655–660. https://doi.org/10.1021/ic50169a033

    Article  CAS  Google Scholar 

  • Bentzen SM (2000) Lise Meitner and Niels Bohr – a historical note. Acta Oncol 39(8):1002–1003

    Article  CAS  PubMed  Google Scholar 

  • Bergman TO (1775) Disquisitio de Attractionibus Electivis (Abhandlung über Verwandtschaftskräfte). Johan Edman, Uppsala

    Google Scholar 

  • Bergman TO (1781) Opuscula physica, chemica et mineralogica (Kleine Physische, Chemische und Mineralogische Werke)

    Google Scholar 

  • Bergman TO (1791) Physick Beskrifning Ofver Jordklotet (1766), übersetzt von L. H. Röhl, Physikalische Beschreibung der Erdkugel. Röse-Verlag, Greifswald

    Google Scholar 

  • Bigelow JH (1946) Potassium Hexacyanocobaltate(III). Inorg Synth 2:225–227. https://doi.org/10.1002/9780470132333.ch72

    Article  Google Scholar 

  • Biggs T et al (2005) The hardening of platinum alloys for potential jewellery application. Platin Met Rev 49(1):2–15

    Article  CAS  Google Scholar 

  • Birch A, Williamson DH (1976) Homogeneous hydrogenation catalysts in organic synthesis. Org React 24:1. https://doi.org/10.1002/0471264180.or024.01

    Article  CAS  Google Scholar 

  • Bongiovanni G et al (1986) Structure of rhodium(III) nitrate aqueous solutions. An investigation by x-ray diffraction and Raman spectroscopy. J Phys Chem 90(2):238–243. https://doi.org/10.1021/j100274a007

    Article  Google Scholar 

  • Botelho MBS et al (2011) Iridium(III)-surfactant complex immobilized in mesoporous silica via templated synthesis: a new route to optical materials. J Mater Chem 21:8829–8834

    Article  CAS  Google Scholar 

  • Brauer G (1975) Handbuch der Präparativen Anorganischen Chemie, Bd 1, 3. Aufl. Enke-Verlag, Stuttgart, S 280. ISBN 3-432-02328-6

    Google Scholar 

  • Brauer G (1978) Handbuch der Präparativen Anorganischen Chemie, Bd 2, 3. Aufl. Enke-Verlag, Stuttgart, S 1736. ISBN 3-432-87813-3

    Google Scholar 

  • Brauer G (1981) Handbuch der Präparativen Anorganischen Chemie, Bd 3, 3. Aufl. Enke-Verlag, Stuttgart, S 1634/1674/1741/1833. ISBN 3-432-87823-0

    Google Scholar 

  • Brauer G (1994) Handbuch der Präparativen Anorganischen Chemie, 4. Aufl. Enke-Verlag, Stuttgart. ISBN 3-432-87823-0

    Google Scholar 

  • Brauer G (2012) Handbook of Preparative Inorganic Chemistry. Elsevier, Amsterdam, S 1589. ISBN 978-0-323-16129-9

    Google Scholar 

  • Britvin SN et al (2001) Miassite Rh17S15, a new mineral from a placier of Miass River, Urals. Zap Vser Mineral Obshch 130(2):41–45

    CAS  Google Scholar 

  • Brodersen K (1968) Structure of β-RuCl3, RuI3, IrBr3, and IrI3. Angew Chem Int Ed 7:148. https://doi.org/10.1002/anie.196801481

    Article  Google Scholar 

  • Brodersen K et al (1968) Die Struktur des IrBr3 und über die Ursachen der Fehlordnungserscheinungen bei den in Schichtenstrukturen kristallisierenden Edelmetalltrihalogeniden. J Less Comm Met 15:347. https://doi.org/10.1016/0022-5088(68)90194-X

    Article  CAS  Google Scholar 

  • Burgess K et al (2005) Chlorotris(triphenylphosphine)-rhodium(I). Encycl Reagents Org Synth, Online Library. Wiley, New York. https://doi.org/10.1002/047084289X.rc162s.pub2

    Book  Google Scholar 

  • Burte EP, Neuner G (1991) Formation of rhodium silicide by rapid thermal annealing and by ion beam mixing. Appl Surf Sci 53:283–290. https://doi.org/10.1016/0169-4332(91)90278-R

    Article  CAS  Google Scholar 

  • Carter RH (1928) Solubilities of some inorganic flurides in water at 25 °C. Ind Eng Chem 20(11):1195

    Article  CAS  Google Scholar 

  • Chen Y et al (2018) Self-supported cobalt nitride porous nanowire arrays as bifunctional electrocatalyst for overall water splitting. Electrochim Acta 273:229–238. https://doi.org/10.1016/j.electacta.2018.04.056

    Article  CAS  Google Scholar 

  • Cheung H et al (2012) Acetic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim, S 211–218

    Google Scholar 

  • Choi S et al (2014) Synthesis of cobalt boride nanoparticles using RF thermal plasma. Adv Powder Technol 25(1):365–371. https://doi.org/10.1016/j.apt.2013.06.002

    Article  CAS  Google Scholar 

  • Churchill MR, Hutchinson JP (1978) Crystal structure of tetrairidium dodecacarbonyl, Ir4(CO)12. An unpleasant case of disorder. Inorg Chem 17:3528–3535. https://doi.org/10.1021/ic50190a040

    Article  CAS  Google Scholar 

  • Coey JMD (1970) The crystal structure of Rh2O3. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 26:1876–1877

    Article  CAS  Google Scholar 

  • Costa MMR et al (1993) Charge densities of two rutile structures: NiF2 and CoF2. Acta Crystallogr Sect B Struct Sci 49(4):591–599

    Article  Google Scholar 

  • Crookes W (1867) The Paris exhibition. Chem News J Phys Sci 15:182

    Google Scholar 

  • Crookes W (1908) On the use of iridium crucibles in chemical operations. Proc R Soc Lond A 80(541):535–536

    Article  Google Scholar 

  • Crowhurst JC et al (2006) Synthesis and characterization of the nitrides of platinum and iridium. Science 311(5765):1275–1278. https://doi.org/10.1126/science.1121813

    Article  CAS  PubMed  Google Scholar 

  • D’Ans J, Lax E (1997) Taschenbuch für Chemiker und Physiker, 3. Elemente, Anorganische Verbindungen und Materialien, Minerale, Bd 3, 4. Aufl. Springer, Heidelberg, S 388. ISBN 978-3-540-60035-0

    Google Scholar 

  • Darling AS (1960) Iridium platinum alloys. Platin Met Rev 4(1):18–26

    CAS  Google Scholar 

  • Davis BH, Occelli ML (2010) Advances in Fischer-Tropsch synthesis, catalysts, and catalysis. CRC Press, Boca Raton, S 67. ISBN 1-4200-6257-3

    Google Scholar 

  • Davis RS (1985) General section citations: recalibration of the U.S. National Prototype Kilogram. J Res Natl Bur Stand 90(4):263–283

    Article  CAS  Google Scholar 

  • Desoize B (2004) Metals and metal compounds in cancer treatment. Anticancer Res 24:1529–1544

    CAS  PubMed  Google Scholar 

  • Düllmann CE (2012) Superheavy elements at GSI: a broad research program with element 114 in the focus of physics and chemistry. Z Krist 100(2):67–74

    Google Scholar 

  • Dunitz JD, Pauling P (1965) Polymorphism in anhydrous cobalt sulphate. Acta Crystallogr 18(4):737–740

    Article  CAS  Google Scholar 

  • Eichler R (2013) First foot prints of chemistry on the shore of the island of superheavy elements. J Phys Conf Ser, IOP Sci 420(1):012003

    Article  CAS  Google Scholar 

  • Ekmekcioglu C, Marktl W (2006) Cobaltmangel. In: Essentielle Spurenelemente: Klinik und Ernährungsmedizin. Springer, Heidelberg, S 198. ISBN 978-3-211-20859-5

    Google Scholar 

  • Elschenbroich C (2008) Organometallchemie, 6. Aufl. Teubner-Verlag, Wiesbaden, S 633–637. ISBN 978-3-8351-0167-8

    Google Scholar 

  • Ernst W, Jelkmann B (2012) The disparate roles of cobalt in erythropoiesis, and doping relevance. Open J Hematol 3(1):3–6

    Google Scholar 

  • Evans DA et al (1988) Rhodium(I)-catalyzed hydroboration of olefins. The documentation of regio- and stereochemical control in cyclic and acyclic systems. J Am Chem Soc 110(20):6917–6918. https://doi.org/10.1021/ja00228a068

    Article  CAS  Google Scholar 

  • Even J (2016) Chemistry aided nuclear physics studies. Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements. Stockholm. https://doi.org/10.1051/epjconf/201613107008

  • Even J et al (2015) In situ synthesis of volatile carbonyl complexes with short-lived nuclides. J Radioanal Nucl Chem 303(3):2457–2466. https://doi.org/10.1007/s10967-014-3793-7

    Article  CAS  Google Scholar 

  • Felixberger JK (2017) Chemie für Einsteiger. Springer, Berlin/Heidelberg, S 339. ISBN 978-3-662-52821-1

    Google Scholar 

  • Fischer EO, Jira R (1953) Di-cyclopentadienyl-kobalt(II). Z Naturf B 8:327–328

    Article  Google Scholar 

  • Frankel C (1999) The end of the dinosaurs: Chicxulub crater and mass extinctions. Cambridge University Press, Cambridge, UK. ISBN 0-521-47447-7

    Google Scholar 

  • Fricke B (1975) Superheavy elements: a prediction of their chemical and physical properties. Rec Impact Phys Inorg Chem 21:89–144

    Article  CAS  Google Scholar 

  • Frisch OR (1973) Distinguished Nuclear Pioneer-1973. Lise Meitner. J Nucl Med 14(6):365–371

    CAS  PubMed  Google Scholar 

  • Gilchrist R (1943) The platinum metals. Chem Rev 32(3):277–372

    Article  CAS  Google Scholar 

  • Greenwood NN, Earnshaw A (1988) Chemie der Elemente, 1. Aufl. Wiley-VCH, Weinheim, S 1463. ISBN 3-527-26169-9

    Google Scholar 

  • Griffith WP (1967) The chemistry of the rarer platinum metals (Os, Ru, Ir, and Rh). Interscience Publishers, Olney, Vereinigtes Königreich, S 241

    Google Scholar 

  • Griffith WP (2008) The periodic table and the platinum group metals. Platin Met Rev 52(2):114

    Article  CAS  Google Scholar 

  • Hagelüken C (2006) Markets for the catalysts metals platinum, palladium, and rhodium. Metallomics 60(1–2):31–42

    Google Scholar 

  • Hagen R (2013) Das Edelmetall-Buch Gold • Silber • Platin • Palladium • Ruthenium • Rhodium • Osmium • Iridium. epubli, S 1905. ISBN 978-3-8442-5081-7

    Google Scholar 

  • Halmshaw R (1954) The use and scope of Iridium 192 for the radiography of steel. Br J Appl Phys 5(7):238–243

    Article  Google Scholar 

  • Halpern J (1981) Mechanistic aspects of homogeneous catalytic hydrogenation and related processes. Inorg Chim Acta 50:11–19. https://doi.org/10.1016/S0020-1693(00)83716-0

    Article  CAS  Google Scholar 

  • Hammerschmidt L et al (2013) Electronic structure and the ground-state properties of cobalt antimonide skutterudites: revisited with different theoretical methods. Phys Status Solidi 210(1):131–139. https://doi.org/10.1002/pssa.201228453

    Article  CAS  Google Scholar 

  • Handley JR (1986) Increasing applications for iridium. Platin Met Rev 30(1):12–13

    Google Scholar 

  • Hartog PJ (1900) Wollaston, William Hyde. In: Dictionary, Bd 62. National Biography, New York, S 311–316

    Google Scholar 

  • Hausmann K (1955) Die Bedeutung der Darmbakterien für die Vitamin B 12- und Folsäure-Versorgung der Menschen und Tiere. Klin Wochenschr 33(15–16):354–359

    Article  CAS  PubMed  Google Scholar 

  • He Y et al (2004) Effect of substrate temperature on CoSi2 formation by a metal vapor vacuum arc ion source. J Cryst Growth 264:266–270. https://doi.org/10.1016/j.jcrysgro.2003.12.03

    Article  CAS  Google Scholar 

  • Hedvall JA (1913) Studien über Rinmansgrün. Chem Zentralb 1913:1273–1274

    Google Scholar 

  • Hedvall JA (1914) Über Rinmans Grün. Z Anorg Chem 86(1):201–224

    Article  CAS  Google Scholar 

  • Hellier C (2001) Handbook of nondestructive evaluation. McGraw-Hill, New York. ISBN 978-0-07-028121-9

    Google Scholar 

  • Hepworth MA et al (1957) The crystal structures of the trifluorides of iron, cobalt, ruthenium, rhodium, palladium and iridium. Acta Crystallogr 10:63–69

    Article  CAS  Google Scholar 

  • Hildebrand AR et al (1991) Chicxulub crater; a possible cretaceous/tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology 19(9):867–871

    Article  Google Scholar 

  • Hofberg H et al (1906) Torbern Olof Bergman. In: Rubenson O Svenskt biografiskt handlexikon, Bd 1, 2. Aufl. A-K. Albert Bonniers Verlag, Stockholm, S 80

    Google Scholar 

  • Hojlund Nielsen PE, Johansen K (1993) Ammonia oxidation catalyst (EP 0562567 A1, Haldor Topsøe AS, Lyngby, Dänemark, veröffentlicht 29. Sep 1993)

    Google Scholar 

  • Holleman AF, Wiberg N (2016) Anorganische Chemie, Band 2: Nebengruppenelemente, Lanthanoide, Actinoide, Transactinoide, 103. De Gruyter, Berlin, S 2010. ISBN 978-3-11-049590-4

    Google Scholar 

  • Holleman AF, Wiberg E, Wiberg N (2007) Lehrbuch der Anorganischen Chemie, 102. Aufl. De Gruyter, Berlin. ISBN 978-3-11-017770-1

    Book  Google Scholar 

  • Holloway JH et al (1965) Quinquevalent rhodium compounds: RhF5 and CsRhF6. J Chem Soc Chem Commun 306–307. https://doi.org/10.1039/c19650000306

  • Hoyano JK, Graham WAG (1982) Oxidative addition of the carbon-hydrogen bonds of neopentane and cyclohexane to a photochemically generated iridium(I) complex. J Am Chem Soc 104(13):3723–3725

    Article  CAS  Google Scholar 

  • Hunt LB, Lever FM (1969) Platinum metals: a survey of productive resources to industrial uses. Platin Met Rev 13(4):126–138

    CAS  Google Scholar 

  • Huxley AD et al (2005) Magnetic Field-Induced Superconductivity in the Ferromagnet URhGe. Science 309(5739):1343–1346. https://doi.org/10.1126/science.1115498

    Article  CAS  PubMed  Google Scholar 

  • Inganäsa O (2004) Electrophosphorescence from substituted poly(thiophene) doped with iridium or platinum complex. Thin Solid Films 468(1–2):226–233

    Google Scholar 

  • Ionova GV et al (2004) Halides of tetravalent transactinides (Rf, Db, Sg, Bh, Hs, Mt, 110th element): physicochemical properties. Russ J Coord Chem 30(5):352

    Article  CAS  Google Scholar 

  • Isaeva A et al (2015) Structure and bonding of Bi4Ir: a difficult-to-access bismuth iridide with a unique framework structure. Inorg Chem 54(3):885–889. https://doi.org/10.1021/ic502205

    Article  CAS  PubMed  Google Scholar 

  • IUPAC Recommendations (1994) Names and symbols of transfermium elements. Pure Appl Chem 66(12):2419

    Article  Google Scholar 

  • Jabbour ZJ et al (2001) The kilogram and measurements of mass and force. J Res Natl Inst Stand Technol 106:25–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jambor JL et al (2002) New Mineral Names. Miassite. Am Mineral 87:1509–1513

    Google Scholar 

  • James BR (1973) Homogeneous Hydrogenation. Wiley, New York. https://doi.org/10.1002/bbpc.19740780622

    Book  Google Scholar 

  • Janowicz AH, Bergman RG (1982) Carbon-hydrogen activation in completely saturated hydrocarbons: direct observation of M + R-H -> M(R)(H). J Am Chem Soc 104(1):352–354

    Article  CAS  Google Scholar 

  • Jollie D (2011) Platinum 2011 (Johnson Matthey plc, Royston, Vereinigtes Königreich, 2011). ISBN 0268-7305

    Google Scholar 

  • Källström K et al (2006) Ir-catalysed asymmetric hydrogenation: ligands, substrates and mechanism. Chem Eur J 12(12):3194–3200

    Article  PubMed  Google Scholar 

  • Kanan MW et al (2009) Cobalt – phosphate oxygen-evolving compound. Chem Soc Rev 38:109–114. https://doi.org/10.1039/B802885K

    Article  CAS  PubMed  Google Scholar 

  • Kanda Y et al (2016) Low-temperature synthesis of rhodium phosphide on alumina and investigation of its catalytic activity toward the hydrodesulfurization of thiophene. Appl Cat A General 515:25–31. https://doi.org/10.1016/j.apcata.2016.01.040

    Article  CAS  Google Scholar 

  • Kandiner HJ (2013) Iridium. Springer, Berlin/Heidelberg, S 63. ISBN 978-3-662-12128-3

    Google Scholar 

  • Katsaros N, Anagnostopoulou A (2002) Rhodium and its compounds as potential agents in cancer treatment. Crit Rev Oncol Hematol 42:297–308

    Article  CAS  PubMed  Google Scholar 

  • Kauffmann GB, Teter LA (1966) Ammonium hexachloroiridate(IV). In: Holtzclaw HF Jr, Inorg Synth 8:223–227

    Google Scholar 

  • Khan MS et al (2014) Controlled synthesis of cobalt telluride superstructures for the visible light photo-conversion of carbon dioxide into methane. Appl Cat A General 487:202–209. https://doi.org/10.1016/j.apcata.2014.09.016

    Article  CAS  Google Scholar 

  • Kintrup J et al (2014) Elektrokatalysator, Elektrodenbeschichtung und Elektrode zur Herstellung von Chlor (DE 102013202144 A1, veröffentlicht 14. Aug 2014)

    Google Scholar 

  • Kittilstved K et al (2006) Direct kinetic correlation of carriers and ferromagnetism in Co2+: ZnO. Phys Rev Lett 97:037203

    Article  PubMed  Google Scholar 

  • Knowles WS (2002) Asymmetrische Hydrierungen. Angew Chem 114(12):2096–2107

    Article  Google Scholar 

  • Kyle RA, Shampo MA (1981) Lise Meitner. JAMA 245(20):2021

    Article  CAS  PubMed  Google Scholar 

  • Lautenschläger K-H, Schröter W (2007) Taschenbuch der Chemie, 20. Aufl. Harri Deutsch-Verlag, Frankfurt am Main, S 379. ISBN 978-3-8171-1761-1

    Google Scholar 

  • Li X et al (2011) Structural, mechanical stability, and physical properties of iridium carbides with various stoichiometries: first-principles investigations. J Phys Chem C 115(14):6948–6953. https://doi.org/10.1021/jp112308t

    Article  CAS  Google Scholar 

  • Li Y, Nguyen TV (2018) Core-shell rhodium sulfide catalyst for hydrogen evolution reaction/hydrogen oxidation reaction in hydrogen-bromine reversible fuel cell. J Power Sources 382:152–159. https://doi.org/10.1016/j.jpowsour.2018.02.005

    Article  CAS  Google Scholar 

  • Lide DR (2010) Properties of the elements and inorganic compounds. In: CRC Handbook of Chemistry and Physics, 90. Aufl. CRC Press & Taylor and Francis, Boca Raton, S 4–68

    Google Scholar 

  • Livingstone SE (2017) The chemistry of ruthenium, rhodium, palladium, osmium, iridium and platinum, pergamon texts in inorganic chemistry. Elsevier, Amsterdam, S 1257. ISBN 978-1-4831-5840-2

    Google Scholar 

  • Loferski PJ (2016) Platinum-group metals, mineral commodity summaries. United States Geological Survey, U. S. Department of the Interior, Washington, DC

    Google Scholar 

  • Löscher W et al (2006) Vitamin B12, Pharmakotherapie bei Haus- und Nutztieren, 7. Aufl. Thieme, Stuttgart, S 346. ISBN 9783830441601

    Google Scholar 

  • Macintyre JE (1992) Dictionary of inorganic compounds. CRC Press, Boca Raton, S 2952. ISBN 978-0-412-30120-9

    Book  Google Scholar 

  • Mandel N, Donohue J (1971) The refinement of the crystal structure of skutterudite, CoAs3. Acta Cryst Sect B Structl Crystallogr Cryst Chem 27:2288. https://doi.org/10.1107/S0567740871005727

    Article  CAS  Google Scholar 

  • Martens H, Goldmann D (2016) Recyclingtechnik Fachbuch für Lehre und Praxis. Springer, Berlin/Heidelberg, S 224. ISBN 978-3-658-02786-5

    Book  Google Scholar 

  • Masud J et al (2016) Cobalt selenide nanostructures: an efficient bifunctional catalyst with high current density at low coverage. ACS Appl Mater Interfaces 8(27):17292–17302. https://doi.org/10.1021/acsami.6b0486

    Article  CAS  PubMed  Google Scholar 

  • Meakin P et al (1972) Nature of chlorotris(triphenylphosphine)rhodium in solution and its reaction with hydrogen. J Am Chem Soc 94(9):3240–3242. https://doi.org/10.1021/ja00764a061

    Article  CAS  Google Scholar 

  • Möhl D (1997) Production of low-energy antiprotons. Hyperfine Interact 109:33–41

    Article  Google Scholar 

  • Moody K (2013) Synthesis of superheavy elements. In: Schädel M, Shaughnessy D (Hrsg) The chemistry of superheavy elements, 2. Aufl. Springer Science & Business Media, Dordrecht, S 24–28. ISBN 9783642374661

    Google Scholar 

  • Morosin B (1967) Crystal structure of manganese (II) and cobalt (II) bromide dehydrate. J Chem Phys 47:417

    Article  CAS  Google Scholar 

  • Moström B (1957) Torbern Bergman: a bibliography of his works. Almqvist & Wiksell, Stockholm

    Google Scholar 

  • Mottishaw J (1999) Notes from the Nib works – where’s the iridium? PENnant 13(2)

    Google Scholar 

  • Müller H et al (2002) Artists’ colors. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim. https://doi.org/10.1002/14356007.a03_143.pub2

    Chapter  Google Scholar 

  • Muller O, Roy R (1968) Formation and stability of the platinum and rhodium oxides at high oxygen pressures and the structures of Pt3O4, β-PtO2 and RhO2. J Less-Common Met 16:129

    Article  CAS  Google Scholar 

  • Münzenberg G et al (1982) Observation of one correlated α-decay in the reaction 58Fe on 209Bi→ 267 109. Z Phys A 309(1):89

    Article  Google Scholar 

  • Naumov P et al (2013) Dynamic single crystals, kinematic analysis of photoinduced crystal jumping (The photosalient effect). Angew Chem 125:10174–10179

    Article  Google Scholar 

  • Nicholls D (2013) The chemistry of iron, cobalt and nickel: comprehensive inorganic chemistry. Elsevier, Amsterdam, S 1070. ISBN 978-1-4831-4643-0

    Google Scholar 

  • Nie GK (2005) Charge radii of β-stable nuclei. Mod Phys Lett A 21(24):1889

    Article  Google Scholar 

  • Nishimura S (2001) Handbook of heterogeneous catalytic hydrogenation for organic synthesis, 1. Aufl. Wiley-Interscience, New York, S 25–26/263, ISBN 9780471396987

    Google Scholar 

  • Nobel D Method for preparing iridium iodides and use thereof as catalysts (WO 1996023730 A1, Rhône Poulenc Fibres, veröffentlicht 8. Aug 1996)

    Google Scholar 

  • Nord AG, Stefanidis T (1983) Structure of cobalt(II) phosphate. Structure refinements of Co3(PO4) 2. A note on the reliability of powder diffraction studies. Acta Chem Scand Ser A 37:715–721

    Article  Google Scholar 

  • Nowotny H (1947) Die Kristallstruktur von Co2P. Z Anorg Allg Chem 254:31–36. https://doi.org/10.1002/zaac.19472540102

    Article  CAS  Google Scholar 

  • Nuclear Regulation Agency, Contaminated pipe fittings discovered among steel castings imported from Taiwan, SECY-84-452, 29 Nov 1984

    Google Scholar 

  • Ohriner EK (2008) Processing of iridium and iridium alloys. Platin Met Rev 52(3):186–197

    Article  CAS  Google Scholar 

  • Ojima I, Kogure T (1972) Selective reduction of α,β-unsaturated terpene carbonyl compounds using hydrosilane-rhodium(I) complex combinations. Tetrahedron Lett 13(49):5035–5038. https://doi.org/10.1016/S0040-4039(01)85162-5

    Article  Google Scholar 

  • Osborn JA, Wilkinson G (1967) Tris(triphenylphosphine)halorhodium(I). Inorg Synth 10:67. https://doi.org/10.1002/9780470132418.ch12

    Article  CAS  Google Scholar 

  • Osborn JA et al (1966) Preparation and Properties of Tris(triphenylphosphine)halogeno-rhodium(I) and Some Reactions Thereof Including Catalytic Homogeneous Hydrogenation of Olefins and Acetylenes and Their Derivatives. J Chem Soc A 1711–1732. https://doi.org/10.1039/J19660001711

  • Paetzold P (2009) Chemie: Eine Einführung. De Gruyter, Berlin, S 204. ISBN 3-11-021135-1

    Google Scholar 

  • Paine RT, Asprey LB (1975) Reductive syntheses of transition metal fluoride compounds. Synthesis of rhenium, osmium, and iridium pentafluorides and tetrafluorides. Inorg Chem 14(5):1111–1113

    Article  CAS  Google Scholar 

  • Parthé E et al (1967) New structure type with Octahedron Pairs for Rhodium(III) Sulfide, Rhodium(III) Selenide, and Iridium(III) Sulfide. Acta Crystallogr 23:832–840. https://doi.org/10.1107/S0365110X67003767

    Article  Google Scholar 

  • Pergola RD et al (1990) Dodecacarbonyltetrairidium: Ir4(CO)12. Inorg Synth 28:245–247. https://doi.org/10.1002/9780470132593.ch63

    Article  Google Scholar 

  • Perry DL (2011) Handbook of Inorganic Compounds, 2. Aufl. Taylor & Francis, Boca Raton, S 483. ISBN 1-4398-1462-7

    Google Scholar 

  • Perry DL (2016) Handbook of Inorganic Compounds, 3. Aufl. CRC Press, Boca Raton, S 523. ISBN 978-1-4398-1462-8

    Book  Google Scholar 

  • Pershina V (2006) Transactinides and the future elements. In: Fuger J (Hrsg) The chemistry of the actinide and transactinide elements, 3. Aufl. Springer Science + Business Media, Dordrecht. ISBN 1-4020-3555-1

    Google Scholar 

  • Persson K (2016) Materials Data on Te2Rh (SG:205) by Materials Project, @misc{osti_1289209. https://doi.org/10.17188/1289209

  • Pohanish RP (2008) Sittig’s handbook of toxic and hazardous chemicals and carcinogens, 5. Aufl. William Andrew Publishing/Elsevier, Norwich, S 697. ISBN 978-0-8155-1904-1

    Google Scholar 

  • Pu Z et al (2018) Activating rhodium phosphide-based catalysts for the pH-universal hydrogen evolution reaction. Nanoscale 10:12407–12412. https://doi.org/10.1039/C8NR02854K

    Article  CAS  PubMed  Google Scholar 

  • Puchstein C et al (2010) 11.4 Cobalt. In: Ernährungsmedizin: nach dem neuen Curriculum Ernährungsmedizin der Bundesärztekammer, 4. Aufl. Thieme, Stuttgart, S 205. ISBN 978-3-13-100294-5

    Google Scholar 

  • Pyykkö P, Atsumi M (2009) Molecular double-bond covalent radii for elements Li-E112. Chem Eur J 15(46):12770

    Article  PubMed  Google Scholar 

  • Pyykkö P, Xu WH (2015) On the extreme oxidation states of iridium. Chemistry 21:9468–9473

    Article  PubMed  Google Scholar 

  • Qian XW et al (2000) Electronic spectroscopy of rhodium mononitride. J Mol Spectr 199(1):18–25. https://doi.org/10.1006/jmsp.1999.7972

    Article  Google Scholar 

  • Qiang L et al (2014) Mechanical and electronic properties of iridium nitride. Chin Phys Lett 31(8):086202

    Article  Google Scholar 

  • Rayner-Canham G, Zheng Z (2007) Naming elements after scientists: an account of a controversy. Found Chem 10:13

    Article  Google Scholar 

  • Remy H (1961) Lehrbuch der Anorganischen Chemie, II. Akademische Verlagsgesellschaft Geest & Portig, Leipzig, S 357

    Google Scholar 

  • Ribár B et al (1976) The crystal structure of cobalt nitrate dihydrate, Co(NO3)2 . 2 H2O. Z Krist 144(1–6):133–138

    Article  Google Scholar 

  • Riedel E (2004) Anorganische Chemie, 6. Aufl. De Gruyter, Berlin, S 834. ISBN 3-11-018168-1

    Book  Google Scholar 

  • Riedel E, Janiak C (2011) Anorganische Chemie. De Gruyter, Berlin, S 877. ISBN 978-3-11-022566-2

    Google Scholar 

  • Riedel S et al (2009) Formation and characterization of the iridium tetroxide molecule with iridium in the oxidation state + viii. Angew Chem 48(42):7879–7883

    Article  Google Scholar 

  • Riedel S et al (2010) How far can we go? Quantum-chemical investigations of oxidation state +IX. Phys Chem 11(4):865–869

    Google Scholar 

  • Rife P (2003) Meitnerium. Chem Eng News 81(36):186

    Article  CAS  Google Scholar 

  • Rigamonti R (1946) Soluzione Solide tra Ossido di Zinco ed Ossidi di Metalli Bivalenti. Gazz Chem Ital 76:476

    Google Scholar 

  • Rinman S (1780) Om grön målare-färg af Cobolt. Kungl Svenska Vetenskapsakad Handl 1780(7–9):163–175

    Google Scholar 

  • Roseblade SJ, Pfaltz A (2007) Iridium-catalyzed asymmetric hydrogenation of olefins. Acc Chem Res 40(12):1402–1411

    Article  CAS  PubMed  Google Scholar 

  • Roy A (1985) The palettes of three impressionist paintings. Nat Gall Tech Bull 9:12–20

    Google Scholar 

  • Roy A (2007) Cobalt blue. In: Berrie BH (Hrsg) Artists’ pigments, a handbook of their history and characteristics, Bd 4. National Gallery of Art, Washington, DC

    Google Scholar 

  • Royar EB, Robinson SD (1982) Rhodium(II)-Carboxylato complexes. Platin Met Rev 26(2):65–69

    Google Scholar 

  • Ryder G et al (1996) The cretaceous-tertiary event and other catastrophes in earth history. Geological Society of America, Boulder, S 47. ISBN 0-8137-2307-8

    Google Scholar 

  • Saito SL (2009) Hartree-Fock-Roothaan energies and expectation values for the neutral atoms He to Uuo: the B-spline expansion method. Data Nucl Data Tables 95(6):836

    Article  CAS  Google Scholar 

  • Sandford G (2003) Perfluoroalkanes. Tetrahedron 59(4):437–454

    Article  CAS  Google Scholar 

  • Scheler T et al (2013) High-Pressure Synthesis and Characterization of Iridium Trihydride. Phys Rev Lett 111(21):215503. https://doi.org/10.1103/PhysRevLett.111.215503

    Article  CAS  PubMed  Google Scholar 

  • Schröcke H, Weiner KL (1981) Mineralogie, ein Lehrbuch auf systematischer Grundlage. De Gruyter, Berlin, S 278. ISBN 978-3-11-006823-8

    Book  Google Scholar 

  • Schubert US et al (2005) New trends in the use of transition metal-ligand complexes for applications in electroluminescent devices. Adv Mater 17(9):1109–1121

    Article  Google Scholar 

  • Schufle JA (1985) Torbern Bergman: a man before his time. Coronado Press, Lawrence

    Google Scholar 

  • Schwarzer S et al (2017) Oxidizing Rhodium with Sulfuric Acid: the Sulfates Rh2(SO4)3 and Rh2(SO4)3·2H2O. Eur J Inorg Chem 752. https://doi.org/10.1002/ejic.201601247

  • Seppelt K et al (2006) Solid state molecular structures of transition metal hexafluorides. Inorg Chem 45(9):3782–3788

    Article  PubMed  Google Scholar 

  • Serkov AT (1979) Spinnerets for viscose rayon cord yarn. Fibre Chem 10(4):377–378

    Article  Google Scholar 

  • Shannon RD (1968) Synthesis and properties of two new members of the rutile family RhO2 and PtO2. Solid State Commun 6:139

    Article  CAS  Google Scholar 

  • Shedd KB (2015) Cobalt, mineral commodities. United States Geological Survey, U. S. Department of the Interior, Washington, DC

    Google Scholar 

  • Shim JY et al (1997) Silicide formation in cobalt/amorphous silicon, amorphous Co–Si and bias-induced Co–Si films. Thin Solid Films 292:31–39. https://doi.org/10.1016/S0040-6090(96)08929-8

    Article  CAS  Google Scholar 

  • Silinsky PS, Seehra MS (1981) Principal magnetic susceptibilities and uniaxial stress experiments in CoO. Phys Rev B 24:419–423

    Article  CAS  Google Scholar 

  • Sitzmann H (2006a) Cobalt fluoride. In: Römpp online. Thieme, Stuttgart

    Google Scholar 

  • Sitzmann H (2006b) Rhodiumverbindungen. In: Römpp online. Thieme, Stuttgart

    Google Scholar 

  • Smeaton WA (1970) Bergman, Torbern Olaf. In: Dictionary of scientific biography, Bd 2. Charles Scribner’s Sons, New York. ISBN 0-684-10114-9

    Google Scholar 

  • Smolańczuk R (1997) Properties of the hypothetical spherical superheavy nuclei. Phys Rev C 56(2):812–824

    Article  Google Scholar 

  • Snure M et al (2009) Progress in zno-based diluted magnetic semiconductors. J Mater 61(6):72–75

    CAS  Google Scholar 

  • Sobhani A et al (2016) Cobalt selenide nanostructures: hydrothermal synthesis, considering the magnetic property and effect of the different synthesis conditions. J Mol Liq 219:1089–1094. https://doi.org/10.1016/j.molliq.2016.03.062

    Article  CAS  Google Scholar 

  • Sonzogni A (2007) Interactive (NNDC) chart of nuclides. International conference on nuclear data for science and technology. National Nuclear Data Center, Brookhaven National Laboratory, Upton

    Google Scholar 

  • Sternberg HW et al (1957) Cobalt Tetracarbonyl Hydride: (Cobalt Hydrocarbonyl). Inorg Synth 5:192. https://doi.org/10.1002/9780470132364.ch55

    Article  CAS  Google Scholar 

  • Strunz H, Nickel EH (2001) Strunz Mineralogical Tables, 9. Aufl. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart, S 70, ISBN 3-510-65188-X

    Google Scholar 

  • Sumner GG et al (1964) The crystal structure of dicobalt octacarbonyl. Acta Crystallogr 17:732–742. https://doi.org/10.1107/S0365110X64001803

    Article  CAS  Google Scholar 

  • Tandon PK et al (2006) Oxidation of ketones by cerium(iv) in presence of iridium(iii) chloride. J Mol Catal A Chem 250(1–2):203–209

    Article  CAS  Google Scholar 

  • Tandon PK et al (2007) Catalysis by Ir(III), Rh(III) and Pd(II) metal ions in the oxidation of organic compounds with H2O2. Appl Organomet Chem 21(3):135–138

    Article  CAS  Google Scholar 

  • Tandon PK et al (2008) Oxidation of cyclic alcohols by cerium(IV) in acidic medium in the presence of iridium(III) chloride. J Mol Catal A Chem 282(1–2):136–143

    Article  CAS  Google Scholar 

  • Thierfelder C et al (2008) Dirac-Hartree-Fock studies of X-ray transitions in meitnerium. Eur Phys J A 36(2):227

    Article  CAS  Google Scholar 

  • Thomas C (1996) Spezielle Pathologie. Schattauer-Verlag, Stuttgart, S 179. ISBN 3-7945-2110-2

    Google Scholar 

  • Ting CY et al (1986) High temperature process limitation on TiSi2. J Electrochem Soc 133(12):2621–2625. https://doi.org/10.1149/1.2108491

    Article  CAS  Google Scholar 

  • Tonzetich ZJ (2002) Organic light emitting diodes – developing chemicals to light the future. J Undergrad Res 1(1)

    Google Scholar 

  • Toutain J-P, Meyer G (1989) Iridium-Bearing sublimates at a hot-spot volcano (Piton de la Fournaise, Indian ocean). Geophys Res Lett 16(12):1391–1394

    Article  CAS  Google Scholar 

  • Van Lenthe E, Baerends EJ (2003) Optimized slater-type basis sets for the elements 1–118. J Comput Chem 24(9):1142–1456

    Article  PubMed  Google Scholar 

  • Vaydia S et al (1985) Formation and thermal stability of CoSi2 on polycrystalline Si. J Appl Phys 58:971. https://doi.org/10.1063/1.336176

    Article  Google Scholar 

  • Votsmeier M et al (2003) Automobile exhaust control. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Warner TE (2012) Synthesis, properties and mineralogy of important inorganic materials. Wiley, New York, S 187. ISBN 0-470-97602-0

    Google Scholar 

  • Wehlte K (1967) Werkstoffe und Techniken der Malerei. Otto Maier-Verlag, Ravensburg. ISBN 3-473-48359-1

    Google Scholar 

  • Wilkinson DH (1993) Discovery of the transfermium elements. Part II: introduction to discovery profiles. Part III: discovery profiles of the transfermium elements. Pure Appl Chem 65(8):1757

    Article  Google Scholar 

  • Wittmer M et al (1986) Electronic structure of iridium silicides. Phys Rev B 33:5391. https://doi.org/10.1103/PhysRevB.33.5391

    Article  CAS  Google Scholar 

  • Wold A, Dwight K (1993) Solid state chemistry: synthesis, structure, and properties of selected oxides and sulfides. Chapman & Hall, Inc. & Springer Science & Business Media, Philadelphia. ISBN 0-412-03621-5

    Book  Google Scholar 

  • Wollaston WH (1804) On a new metal, found in crude platina. Philos Trans R Soc 94:419–430. https://doi.org/10.1098/rstl.1804.0019

    Article  Google Scholar 

  • Wollaston WH (1805) On the discovery of palladium; with observations on other substances found with platina. Philos Trans R Soc 95:316–330. https://doi.org/10.1098/rstl.1805.0024

    Article  Google Scholar 

  • Wu C et al (2015) Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution. Mater Lett 59:1748–1751. https://doi.org/10.1016/j.matlet.2005.01.058

    Article  CAS  Google Scholar 

  • Wu C et al (2016) Cobalt nitrides as a class of metallic electrocatalysts for the oxygen evolution reaction. Inorg Chem Front 3:236–242. https://doi.org/10.1039/C5QI00197H

    Article  CAS  Google Scholar 

  • Xiong J et al (2005) The formation of Co2C species in activated carbon supported cobalt-based catalysts and its impact on Fischer-Tropsch reaction. Catal Lett 102:265–269. https://doi.org/10.1007/s10562-005-5867-1

    Article  CAS  Google Scholar 

  • Yoon JK et al (2012) Methods for manufacturing of cobalt boride coating layer on surface of steels by using a pack cementation process (US 20130260160 A1, Priorität 30. März 2012)

    Google Scholar 

  • Zaleski-Ejgierd P (2014) High-pressure formation and stabilization of binary iridium hydrides. Phys Chem 16(7):3220–3229. https://doi.org/10.1039/C3CP54300E

    Article  CAS  Google Scholar 

  • Zeiringer I et al (2015) Crystal structures and constitution of the binary system iridium-boron. Front Mater Sci China 58(8):649–668. https://doi.org/10.1007/s40843-015-0078-6

    Article  CAS  Google Scholar 

  • Zeng F et al (2010) Cobalt silicide formations and magnetic properties of laser ablated Co(Cr) thin films. Intermetallics 18:306–311

    Article  CAS  Google Scholar 

  • Zhang G et al (2018) Cobalt telluride/graphene composite nanosheets for excellent gravimetric and volumetric Na-ion storage. J Mat Chem A 6:6335–6343. https://doi.org/10.1039/C8TA01265B

    Article  CAS  Google Scholar 

  • Zhao Y-H et al (2012) Structural and electronic properties of cobalt carbide Co2C and its surface stability: density functional theory study. Surf Sci 606:598–604. https://doi.org/10.1016/j.susc.2011.11.025

    Article  CAS  Google Scholar 

  • Zhou M et al (2014) Identification of an iridium-containing compound with a formal oxidation state of IX. Nature 514:475–477

    Article  PubMed  Google Scholar 

  • Ziegler E et al (2001) High-efficiency tunable X-ray focusing optics using mirrors and laterally-graded multilayers. Nucl Instrum Methods Phys Res Sect A 2001:467–468

    Google Scholar 

  • Zielinski P et al (2003) The search for 271Mt via the reaction 238U + 37Cl. GSI annual report, Gesellschaft für Schwerionenforschung, Darmstadt

    Google Scholar 

  • Zug KA et al (2009) Patch-test results of the North American contact dermatitis group 2005–2006. Dermat 20(3):149–160

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sicius, H. (2023). Cobaltgruppe: Elemente der neunten Nebengruppe. In: Handbuch der chemischen Elemente. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65664-8_14

Download citation

Publish with us

Policies and ethics