Skip to main content

Symbolic Artificial Intelligence Methods for Prescriptive Analytics

  • Chapter
  • First Online:
Digital Transformation

Abstract

Prescriptive analytics in supply chain management and manufacturing addresses the question of “what” should happen “when”, where good recommendations require the solving of decision and optimization problems in all stages of the product life cycle at all decision levels. Artificial intelligence (AI) provides general methods and tools for the automated solving of such problems.

We start our contribution with a discussion of the relation between AI and analytics techniques. As many decision and optimization problems are computationally complex, we present the challenges and approaches for solving such hard problems by AI methods and tools. As a running example for the introduction of general problem-solving frameworks, we employ production planning and scheduling.

First, we present the fundamental modeling and problem-solving concepts of constraint programming (CP), which has a long and successful history in solving practical planning and scheduling tasks. Second, we describe highly expressive methods for problem representation and solving based on answer set programming (ASP), which is a variant of logic programming. Finally, as the application of exact algorithms can be prohibitive for very large problem instances, we discuss some methods from the area of local search aiming at near-optimal solutions. Besides the introduction of basic principles, we point out available tools and practical showcases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The concept of operation types is not needed to define the FJSSP. However, this concept is often given in real environments representing machine abilities.

  2. 2.

    https://www.ibm.com/products/ilog-cplex-optimization-studio

  3. 3.

    In OPL, it is also possible to write (mixed) integer linear programs, quadratic or continuous programs.

  4. 4.

    This is similar to structs in the C language.

  5. 5.

    https://www.minizinc.org/challenge.html

  6. 6.

    https://www.ibm.com/analytics/cplex-cp-optimizer

References

  1. Abels, D., Jordi, J., Ostrowski, M., Schaub, T., Toletti, A., Wanko, P.: Train scheduling with hybrid ASP. In: Balduccini, M., Lierler, Y., Woltran, S. (eds.) Proceedings of the Fifteenth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’19). Lecture Notes in Artificial Intelligence, vol. 11481, pp. 3–17. Springer-Verlag (2019)

    Google Scholar 

  2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)

    Google Scholar 

  3. Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M., Ricca, F.: Evaluation of disjunctive programs in WASP. In: Balduccini, M., Lierler, Y., Woltran, S. (eds.) Proceedings of the Fifteenth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’19). Lecture Notes in Artificial Intelligence, vol. 11481, pp. 241–255. Springer-Verlag (2019)

    Google Scholar 

  4. Alviano, M., Dodaro, C., Maratea, M.: Nurse (re)scheduling via answer set programming. Intelligenza Artificiale 12(2), 109–124 (2018)

    Google Scholar 

  5. Balduccini, M.: Industrial-size scheduling with ASP+CP. In: Delgrande, J., Faber, W. (eds.) Proceedings of the Eleventh International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’11). Lecture Notes in Artificial Intelligence, vol. 6645, pp. 284–296. Springer-Verlag (2011)

    Google Scholar 

  6. Banbara, M., Inoue, K., Kaufmann, B., Okimoto, T., Schaub, T., Soh, T., Tamura, N., Wanko, P.: teaspoon: Solving the curriculum-based course timetabling problems with answer set programming. Annals of Operations Research 275(1), 3–37 (2019)

    Google Scholar 

  7. Baral, C., Gelfond, M.: Logic programming and knowledge representation. Journal of Logic Programming 19/20, 73–148 (1994)

    Google Scholar 

  8. Beck, H., Bierbaumer, B., Dao-Tran, M., Eiter, T., Hellwagner, H., Schekotihin, K.: Rule-based stream reasoning for intelligent administration of content-centric networks. In: Michael, L., Kakas, A. (eds.) Proceedings of the Fifteenth European Conference on Logics in Artificial Intelligence (JELIA’16). Lecture Notes in Artificial Intelligence, vol. 10021, pp. 522–528. Springer-Verlag (2016)

    Google Scholar 

  9. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

    Google Scholar 

  10. Blazewicz, J., Ecker, K., Pesch, E., Schmidt, G., Weglarz, J.: Handbook on Scheduling: From Theory to Applications. Springer-Verlag (2014)

    Google Scholar 

  11. Booth, K., Nejat, G., Beck, C.: A constraint programming approach to multi-robot task allocation and scheduling in retirement homes. In: Rueher, M. (ed.) Proceedings of the Twenty-second International Conference on Principles and Practice of Constraint Programming (CP’16). Lecture Notes in Computer Science, vol. 9892, pp. 539–555. Springer-Verlag (2016)

    Google Scholar 

  12. Calimeri, F., Dodaro, C., Fuscà, D., Perri, S., Zangari, J.: Efficiently coupling the I-DLV grounder with ASP solvers. Theory and Practice of Logic Programming 20(2), 205–224 (2020)

    Google Scholar 

  13. Calimeri, F., Ianni, G., Pacenza, F., Perri, S., Zangari, J.: Incremental answer set programming with overgrounding. Theory and Practice of Logic Programming 19(5-6), 957–973 (2019)

    Google Scholar 

  14. Cordier, M., Dague, P., Lévy, F., Montmain, J., Staroswiecki, M., Travé-Massuyès, L.: Conflicts versus analytical redundancy relations: A comparative analysis of the model based diagnosis approach from the artificial intelligence and automatic control perspectives. IEEE Transactions on Systems, Man, and Cybernetics, Part B 34(5), 2163–2177 (2004)

    Google Scholar 

  15. Cuteri, B., Dodaro, C., Ricca, F., Schüller, P.: Overcoming the grounding bottleneck due to constraints in ASP solving: Constraints become propagators. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI’20). pp. 1688–1694. ijcai.org (2020)

    Google Scholar 

  16. Da Col, G., Teppan, E.: Learning constraint satisfaction heuristics for configuration problems. In: Zhang, L., Haag, A. (eds.) Proceedings of the Nineteenth International Configuration Workshop. pp. 8–11. IESEG School of Management (2017)

    Google Scholar 

  17. Da Col, G., Teppan, E.: Google vs IBM: A constraint solving challenge on the job-shop scheduling problem. In: Bogaerts, B., Erdem, E., Fodor, P., Formisano, A., Ianni, G., Inclezan, D., Vidal, G., Villanueva, A., de Vos, M., Yang, F. (eds.) Technical Communications of the Thirty-fifth International Conference on Logic Programming (ICLP’19). Electronic Proceedings in Theoretical Computer Science, vol. 306. Open Publishing Association (2019)

    Google Scholar 

  18. Da Col, G., Teppan, E.: Industrial size job shop scheduling tackled by present day CP solvers. In: Schiex, T., de Givry, S. (eds.) Proceedings of the Twenty-fifth International Conference on Principles and Practice of Constraint Programming (CP’19). Lecture Notes in Computer Science, vol. 11802, pp. 144–160. Springer-Verlag (2019)

    Google Scholar 

  19. De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate logic as a modeling language: The IDP system. In: Kifer, M., Liu, A. (eds.) Declarative Logic Programming: Theory, Systems, and Applications. pp. 279–323. ACM / Morgan and Claypool Publishers (2018)

    Google Scholar 

  20. De Raedt, L., Passerini, A., Teso, S.: Learning constraints from examples. In: McIlraith, S., Weinberger, K. (eds.) Proceedings of the Thirty-Second National Conference on Artificial Intelligence (AAAI’18), the Thirtieth Conference on Innovative Applications of Artificial Intelligence (IAAI’18), and the Eighth AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI’18). pp. 7965–7970. AAAI Press (2018)

    Google Scholar 

  21. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)

    Google Scholar 

  22. Delen, D., Demirkan, H.: Data, information and analytics as services. Decision Support Systems 55(1), 359–363 (2013)

    Google Scholar 

  23. Dodaro, C., Gasteiger, P., Leone, N., Musitsch, B., Ricca, F., Schekotihin, K.: Combining answer set programming and domain heuristics for solving hard industrial problems. Theory and Practice of Logic Programming 16(5-6), 653–669 (2016)

    Google Scholar 

  24. Dodaro, C., Leone, N., Nardi, B., Ricca, F.: Allotment problem in travel industry: A solution based on ASP. In: ten Cate, B., Mileo, A. (eds.) Proceedings of the Ninth International Conference on Web Reasoning and Rule Systems (RR’15). Lecture Notes in Computer Science, vol. 9209, pp. 77–92. Springer-Verlag (2015)

    Google Scholar 

  25. Dorigo, M., Birattari, M., Stützle, T.: Ant colony optimization. IEEE Computational Intelligence Magazine 1(4), 28–39 (2006)

    Google Scholar 

  26. Erdem, E., Gelfond, M., Leone, N.: Applications of ASP. AI Magazine 37(3), 53–68 (2016)

    Google Scholar 

  27. Erdem, E., Patoglu, V.: Applications of ASP in robotics. Künstliche Intelligenz 32(2-3), 143–149 (2018)

    Google Scholar 

  28. Falkner, A., Friedrich, G., Haselböck, A., Schenner, G., Schreiner, H.: Twenty-five years of successful application of constraint technologies at Siemens. AI Magazine 37(4), 67–80 (2016)

    Google Scholar 

  29. Falkner, A., Friedrich, G., Schekotihin, K., Taupe, R., Teppan, E.: Industrial applications of answer set programming. Künstliche Intelligenz 32(2-3), 165–176 (2018)

    Google Scholar 

  30. Felfernig, A., Burke, R.: Constraint-based recommender systems: Technologies and research issues. In: Fensel, D., Werthner, H. (eds.) Proceedings of the Tenth International Conference on Electronic Commerce (ICEC’08). ACM International Conference Proceeding Series, vol. 342, pp. 3:1–3:10. ACM (2008)

    Google Scholar 

  31. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: Intelligent support for interactive configuration of mass-customized products. In: Monostori, L., Váncza, J., Ali, M. (eds.) Proceedings of the Fourteenth International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE’01). Lecture Notes in Computer Science, vol. 2070, pp. 746–756. Springer-Verlag (2001)

    Google Scholar 

  32. Felfernig, A., Teppan, E., Friedrich, G., Isak, K.: Intelligent debugging and repair of utility constraint sets in knowledge-based recommender applications. In: Bradshaw, J., Lieberman, H., Staab, S. (eds.) Proceedings of the Thirteenth International Conference on Intelligent User Interfaces (IUI’08). pp. 217–226. ACM (2008)

    Google Scholar 

  33. Fleischanderl, G., Friedrich, G., Haselböck, A., Schreiner, H., Stumptner, M.: Configuring large systems using generative constraint satisfaction. IEEE Intelligent Systems and their Applications 13(4), 59–68 (1998)

    Google Scholar 

  34. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co. (1979)

    Google Scholar 

  35. Gazzaneo, L., Padovano, A., Umbrello, S.: Designing smart operator 4.0 for human values: A value sensitive design approach. Procedia Manufacturing 42, 219–226 (2020)

    Google Scholar 

  36. Gebser, M., Janhunen, T., Rintanen, J.: Answer set programming as SAT modulo acyclicity. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Proceedings of the Twenty-first European Conference on Artificial Intelligence (ECAI’14). pp. 351–356. IOS Press (2014)

    Google Scholar 

  37. Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M., Romero, J., Schaub, T., Thiele, S., Wanko, P.: Potassco User Guide. University of Potsdam (2019)

    Google Scholar 

  38. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory solving made easy with clingo 5. In: Carro, M., King, A. (eds.) Technical Communications of the Thirty-second International Conference on Logic Programming (ICLP’16). Open Access Series in Informatics (OASIcs), vol. 52, pp. 2:1–2:15. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

  39. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan and Claypool Publishers (2012)

    Google Scholar 

  40. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. Theory and Practice of Logic Programming 19(1), 27–82 (2019)

    Google Scholar 

  41. Gebser, M., Kaufmann, B., Otero, R., Romero, J., Schaub, T., Wanko, P.: Domain-specific heuristics in answer set programming. In: desJardins, M., Littman, M. (eds.) Proceedings of the Twenty-Seventh National Conference on Artificial Intelligence (AAAI’13). pp. 350–356. AAAI Press (2013)

    Google Scholar 

  42. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to practice. Artificial Intelligence 187–188, 52–89 (2012)

    Google Scholar 

  43. Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F., Schaub, T.: Evaluation techniques and systems for answer set programming: A survey. In: Lang, J. (ed.) Proceedings of the Twenty-seventh International Joint Conference on Artificial Intelligence (IJCAI’18). pp. 5450–5456. ijcai.org (2018)

    Google Scholar 

  44. Gebser, M., Maratea, M., Ricca, F.: The seventh answer set programming competition: Design and results. Theory and Practice of Logic Programming 20(2), 176–204 (2020)

    Google Scholar 

  45. Gebser, M., Obermeier, P., Schaub, T., Ratsch-Heitmann, M., Runge, M.: Routing driverless transport vehicles in car assembly with answer set programming. Theory and Practice of Logic Programming 18(3-4), 520–534 (2018)

    Google Scholar 

  46. Gebser, M., Ryabokon, A., Schenner, G.: Combining heuristics for configuration problems using answer set programming. In: Calimeri, F., Ianni, G., Truszczyński, M. (eds.) Proceedings of the Thirteenth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’15). Lecture Notes in Artificial Intelligence, vol. 9345, pp. 384–397. Springer-Verlag (2015)

    Google Scholar 

  47. Gebser, M., Maratea, M., Ricca, F.: What’s hot in the answer set programming competition. In: Schuurmans, D., Wellman, M. (eds.) Proceedings of the Thirtieth National Conference on Artificial Intelligence (AAAI’16). pp. 4327–4329. AAAI Press (2016)

    Google Scholar 

  48. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference and Symposium of Logic Programming (ICLP’88). pp. 1070–1080. MIT Press (1988)

    Google Scholar 

  49. Gelfond, M.: Answer sets. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation. Foundations of Artificial Intelligence, vol. 3, pp. 285–316. Elsevier (2008)

    Google Scholar 

  50. Gendreau, M., Potvin, J.: Handbook of Metaheuristics. Springer-Verlag (2010)

    Google Scholar 

  51. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley (1989)

    Google Scholar 

  52. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Elsevier/Morgan Kaufmann Publishers (2004)

    Google Scholar 

  53. Hungerländer, P., Maier, K., Pöcher, J., Rendl, A., Truden, C.: Solving an on-line capacitated vehicle routing problem with structured time windows. In: Fink, A., Fügenschuh, A., Geiger, M. (eds.) Selected Papers of the Annual International Conference of the German Operations Research Society (GOR’16). pp. 127–132. Operations Research Proceedings, Springer-Verlag (2018)

    Google Scholar 

  54. Janhunen, T., Kaminski, R., Ostrowski, M., Schaub, T., Schellhorn, S., Wanko, P.: Clingo goes linear constraints over reals and integers. Theory and Practice of Logic Programming 17(5-6), 872–888 (2017)

    Google Scholar 

  55. Janhunen, T., Niemelä, I.: Compact translations of non-disjunctive answer set programs to propositional clauses. In: Balduccini, M., Son, T. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning: Essays Dedicated to Michael Gelfond on the Occasion of His 65th Birthday. Lecture Notes in Computer Science, vol. 6565, pp. 111–130. Springer-Verlag (2011)

    Google Scholar 

  56. Kagermann, H., Wahlster, W., Helbig, J.: Recommendations for implementing the strategic initiative Industrie 4.0: Final report of the Industrie 4.0 Working Group. acatech – National Academy of Science and Engineering (2013)

    Google Scholar 

  57. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the International Conference on Neural Networks (ICNN’95). pp. 1942–1948. IEEE Computer Society Press (1995)

    Google Scholar 

  58. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Google Scholar 

  59. Korbicz, J., Kowalczuk, Z., Koácielny, J., Cholewa, W. (eds.): Fault Diagnosis: Models, Artificial Intelligence, Applications. Springer-Verlag (2004)

    Google Scholar 

  60. Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: IBM ILOG CP optimizer for scheduling – 20+ years of scheduling with constraints at IBM/ILOG. Constraints 23(2), 210–250 (2018)

    Google Scholar 

  61. Lepenioti, K., Bousdekis, A., Apostolou, D., Mentzas, G.: Prescriptive analytics: Literature review and research challenges. International Journal of Information Management 50, 57–70 (2020)

    Google Scholar 

  62. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138(1-2), 39–54 (2002)

    Google Scholar 

  63. Lifschitz, V.: Answer Set Programming. Springer-Verlag (2019)

    Google Scholar 

  64. Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer programming. In: Brewka, G., Eiter, T., McIlraith, S. (eds.) Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning (KR’12). pp. 32–42. AAAI Press (2012)

    Google Scholar 

  65. Maratea, M., Pulina, L., Ricca, F.: Multi-engine ASP solving with policy adaptation. Journal of Logic and Computation 25(6), 1285–1306 (2015)

    Google Scholar 

  66. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A., Di Gaspero, L., Qu, R., Burke, E.: Setting the research agenda in automated timetabling: The second international timetabling competition. INFORMS Journal on Computing 22(1), 120–130 (2010)

    Google Scholar 

  67. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: A survey and assessment. Constraints 18(4), 478–534 (2013)

    Google Scholar 

  68. Nguyen, V., Obermeier, P., Son, T., Schaub, T., Yeoh, W.: Generalized target assignment and path finding using answer set programming. In: Sierra, C. (ed.) Proceedings of the Twenty-sixth International Joint Conference on Artificial Intelligence (IJCAI’17). pp. 1216–1223. IJCAI/AAAI Press (2017)

    Google Scholar 

  69. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-prolog decision support system for the space shuttle. In: Ramakrishnan, I. (ed.) Proceedings of the Third International Symposium on Practical Aspects of Declarative Languages (PADL’01). Lecture Notes in Computer Science, vol. 1990, pp. 169–183. Springer-Verlag (2001)

    Google Scholar 

  70. Perron, L., Furnon, V.: OR-Tools https://developers.google.com/optimization/

  71. Pham, T., Germano, S., Mileo, A., Kümper, D., Intizar Ali, M.: Automatic configuration of smart city applications for user-centric decision support. In: Crespi, N., Manzalini, A., Secci, S. (eds.) Proceedings of the Twentieth Conference on Innovations in Clouds, Internet and Networks (ICIN’17). pp. 360–365. IEEE Computer Society Press (2017)

    Google Scholar 

  72. Priore, P., Gómez, A., Pino, R., Rosillo, R.: Dynamic scheduling of manufacturing systems using machine learning: An updated review. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 28(1), 83-97 (2014)

    Google Scholar 

  73. Rabbouch, B., Saâdaoui, F., Mraihi, R.: Constraint programming based algorithm for solving large-scale vehicle routing problems. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds.) Proceedings of the Fourteenth International Conference on Hybrid Artificial Intelligence Systems (HAIS’19). Lecture Notes in Computer Science, vol. 11734, pp. 526–539. Springer-Verlag (2019)

    Google Scholar 

  74. Rahim, M., Musirin, I., Abidin, I., Othman, M., Joshi, D.: Congestion management based optimization technique using bee colony. In: Proceedings of the Fourth International Conference on Power Engineering and Optimization (PEOCO’10). pp. 184–188. IEEE Computer Society Press (2010)

    Google Scholar 

  75. Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic and Databases. pp. 55–76. Plenum Press (1978)

    Google Scholar 

  76. Reynolds, C.: Flocks, herds, and schools: A distributed behavioral model. In: Stone, M. (ed.) Proceedings of the Fourteenth Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’87). pp. 25–34. ACM (1987)

    Google Scholar 

  77. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.: Team-building with answer set programming in the Gioia-Tauro seaport. Theory and Practice of Logic Programming 12(3), 361–381 (2012)

    Google Scholar 

  78. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier (2006)

    Google Scholar 

  79. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education (2010)

    Google Scholar 

  80. Salido, M., Garrido, A., Barták, R.: Introduction: Special issue on constraint satisfaction techniques for planning and scheduling problems. Engineering Applications of Artificial Intelligence 21(5), 679–682 (2008)

    Google Scholar 

  81. Shmueli, G., Koppius, O.: Predictive analytics in information systems research. MIS Quarterly 35(3), 553–572 (2011)

    Google Scholar 

  82. Souza, G.: Supply chain analytics. Business Horizons 57(5), 595–605 (2014)

    Google Scholar 

  83. Valouxis, C., Housos, E.: Constraint programming approach for school timetabling. Computers & Operations Research 30(10), 1555–1572 (2003)

    Google Scholar 

  84. Weinzierl, A., Bogaerts, B., Bomanson, J., Eiter, T., Friedrich, G., Janhunen, T., Kaminski, T., Langowski, M., Leutgeb, L., Schenner, G., Taupe, R.: The Alpha solver for lazy-grounding answer-set programming. ALP Newsletter (2019)

    Google Scholar 

  85. Xi, B., Liu, Z., Raghavachari, M., Xia, C., Zhang, L.: A smart hill-climbing algorithm for application server configuration. In: Feldman, S., Uretsky, M., Najork, M., Wills, C. (eds.) Proceedings of the Thirteenth International Conference on World Wide Web (WWW’04). pp. 287–296. ACM (2004)

    Google Scholar 

  86. Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in a Boolean satisfiability solver. In: Ernst, R. (ed.) Proceedings of the International Conference on Computer-Aided Design (ICCAD’01). pp. 279–285. IEEE Computer Society Press (2001)

    Google Scholar 

Download references

Acknowledgements

This work has been conducted in the scope of the research project DynaCon (FFG-PNr.: 861263), funded by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT) under the program “ICT of the Future” between 2017 and 2020, the research project Productive4.0, funded by EU-ECSEL under grant agreement no737459, and the KWF project no28472, funded by cms electronics GmbH, FunderMax GmbH, Hirsch Armbänder GmbH, incubed IT GmbH, Infineon Technologies Austria AG, Isovolta AG, Kostwein Holding GmbH and Privatstiftung Kärntner Sparkasse. We thank Karen Meehan for proofreading and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Friedrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Friedrich, G., Gebser, M., Teppan, E.C. (2023). Symbolic Artificial Intelligence Methods for Prescriptive Analytics. In: Vogel-Heuser, B., Wimmer, M. (eds) Digital Transformation. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65004-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-65004-2_16

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-65003-5

  • Online ISBN: 978-3-662-65004-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics