Skip to main content

Modelling the Top Floor: Internal and External Data Integration and Exchange

  • Chapter
  • First Online:
Digital Transformation

Abstract

Digital representations of top floor entities are inherent in higher level software suites such as enterprise resource planning (ERP) systems or manufacturing execution systems (MESs). Typical implementations utilise proprietary conceptual models that lead to a plethora of both import and export filters between different systems. In this chapter we will highlight the modelling of top floor entities by adopting international standards and discussing arising interoperability issues. With the selected standards, we outline an approach for vertical integration between the ERP and MES levels as well as horizontal integration among organisations in a value added network. We complement our structural, model-based and data-driven perspective with business process stencils that are to be customised to specific business case needs. With that, we establish a purely model-based perspective on the coupling of top floor internal and external data exchange matters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    cf. https://mesa.org/.

References

  1. Adams, M., Bangemann, T., Behnsch, J., Bienek, C., Blank, E., Hofmann, J., Küppers, U., Montino, R., Seibl, F., Theobald, C., Weinmann, M., Winkler, T., Wirt, A., Wollschlaeger, M.: Industrie 4.0: MES – prerequisite for digital operation and production management – tasks and future requirements. Position paper, German Electrical and Electronic Manufacturers’ Association (ZVEI) (2017)

    Google Scholar 

  2. American National Standards Institute: Enterprise–control system integration part 1: Models and terminology (2000)

    Google Scholar 

  3. Barros, A.: Process choreography modelling. In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management 1, Introduction, Methods, and Information Systems, 2nd Ed, pp. 279–300. International Handbooks on Information Systems, Springer (2015). https://doi.org/10.1007/978-3-642-45100-3_12

  4. Biffl, S., Gerhard, D., Lüder, A.: Introduction to the multi-disciplinary engineering for cyber-physical production systems. In: Multi-Disciplinary Engineering for Cyber-Physical Production Systems: Data Models and Software Solutions for Handling Complex Engineering Projects, pp. 1–24. Springer International Publishing (2017). https://doi.org/10.1007/978-3-319-56345-9_1

  5. Boyes, H., Hallaq, B., Cunningham, J., Watson, T.: The industrial internet of things (IIoT): An analysis framework. Computers in Industry 101, 1–12 (2018). https://doi.org/10.1016/j.compind.2018.04.015

    Article  Google Scholar 

  6. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice. Morgan & Claypool, 2 edn. (2017)

    Google Scholar 

  7. Breque, M., De Nul, L., Petridis, A.: Industry 5.0 – towards a sustainable, human-centric and resilient European industry. R &I Paper Series – Policy Brief KI-BD-20-021-EN-N, European Commission, Directorate-General for Research and Innovation (2021). https://doi.org/10.2777/308407

  8. Decker, G., Kopp, O., Leymann, F., Pfitzner, K., Weske, M.: Modeling service choreographies using BPMN and BPEL4Chor. In: Bellahsène, Z., Léonard, M. (eds.) Proceedings of the International Conference on Advanced Information Systems Engineering (CAiSE). Lecture Notes in Computer Science, vol. 5074, pp. 79–93 (2008). https://doi.org/10.1007/978-3-540-69534-9_6

  9. Deutsches Institut für Normung: Reference Architecture Model Industrie 4.0 (RAMI4.0) (2016), DIN SPEC 91345:2016-04

    Google Scholar 

  10. Drath, R. (ed.): AutomationML – A Practical Guide. De Gruyter Oldenbourg (2021). https://doi.org/10.1515/9783110746235

  11. Ehrendorfer, M., Fassmann, J.A., Mangler, J., Rinderle-Ma, S.: Conformance checking and classification of manufacturing log data. In: 21st IEEE International Conference on Business Informatics (CBI). vol. 01, pp. 569–577 (2019). https://doi.org/10.1109/CBI.2019.00072

  12. Geerts, G.L., McCarthy, W.E.: Modeling business enterprises as value-added process hierarchies with Resource-Event-Agent object templates. In: Sutherland, J., Casanave, C., Miller, J., Patel, P., Hollowell, G. (eds.) Proceedings of the OOPSLA’95 Workshop. pp. 94–113. Springer (1997). https://doi.org/10.1007/978-1-4471-0947-1_10

  13. Geerts, G.L., McCarthy, W.E.: The ontological foundation of REA enterprise information systems. In: Proceedings of the Annual Meeting of the American Accounting Association. pp. 127–150 (2000)

    Google Scholar 

  14. Geerts, G.L., McCarthy, W.E.: An ontological analysis of the economic primitives of the extended-REA enterprise information architecture. International Journal of Accounting Information Systems 3(1), 1–16 (2002). https://doi.org/10.1016/S1467-0895(01)00020-3

    Article  Google Scholar 

  15. Gordijn, J., Wieringa, R.: E3value User Guide – Designing Your Ecosystem in a Digital World. The Value Engineers B.V., 1 edn. (2021)

    Google Scholar 

  16. Institute of Electrical and Electronics Engineers: IEEE standard for VHDL language reference manual (2019), IEEE 1076-2019

    Google Scholar 

  17. International Electrotechnical Commission: Enterprise–control system integration – part 1: Models and terminology (2013), IEC 62264-1:2013

    Google Scholar 

  18. International Electrotechnical Commission: Enterprise–control system integration – part 2: Objects and attributes for enterprise–control system integration (2013), IEC 62264-2:2013

    Google Scholar 

  19. International Electrotechnical Commission: Enterprise–control system integration – part 4: Object model attributes for manufacturing operations management integration (2015), IEC 62264-4:2015

    Google Scholar 

  20. International Electrotechnical Commission: Engineering data exchange format for use in industrial automation systems engineering – Automation Markup Language – part 1: Architecture and general requirements (2018), IEC 62714-1:2018

    Google Scholar 

  21. International Electrotechnical Commission: OPC Unified Architecture - part 1: Overview and concepts. Tech. Rep. 3.0, OPC Foundation (2020), IEC TR 62541-1:2020

    Google Scholar 

  22. International Organization for Standardization: Electronic data interchange for administration, commerce and transport (EDIFACT) - application level syntax rules (syntax version number: 4, syntax release number: 2) - part 10: Syntax service directories (2014), ISO 9735-10:2014

    Google Scholar 

  23. International Organization for Standardization, International Electrotechnical Commission: Business transaction scenarios – accounting and economic ontology (2007), ISO/IEC 15944-4:2007(E)

    Google Scholar 

  24. Ismail, A., Truong, H., Kastner, W.: Manufacturing process data analysis pipelines: a requirements analysis and survey. Journal of Big Data 6(1) (2019). https://doi.org/10.1186/s40537-018-0162-3

  25. Kang, H.S., Lee, J.Y., Choi, S., Kim, H., Park, J.H., Son, J.Y., Kim, B.H., Noh, S.D.: Smart manufacturing: Past research, present findings, and future directions. International Journal of Precision Engineering and Manufacturing-Green Technology 3(1), 111–128 (2016). https://doi.org/10.1007/s40684-016-0015-5

    Article  Google Scholar 

  26. Lang, L., Wally, B., Huemer, C., Šindelár, R., Mazak, A., Wimmer, M.: A graphical toolkit for IEC 62264-2. In: Proceedings of the 53rd CIRP Conference on Manufacturing Systems (CMS). pp. 532–537 (2020). https://doi.org/10.1016/j.procir.2020.03.049

  27. Lu, Y., Morris, K., Frechette, S.: Current standards landscape for smart manufacturing systems. NISTIR 8107, National Institute of Standards and Technology (2016). https://doi.org/10.6028/NIST.IR.8107

  28. Mazak, A., Huemer, C.: From business functions to control functions: Transforming REA to ISA-95. In: Proceedings of the 17th IEEE Conference on Business Informatics (CBI). vol. 1, pp. 33–42. IEEE (2015). https://doi.org/10.1109/CBI.2015.50

  29. Mazak, A., Huemer, C.: HoVer: A modeling framework for horizontal and vertical integration. In: Proceedings of the 13th IEEE International Conference on Industrial Informatics (INDIN). pp. 1642–1647. IEEE (2015). https://doi.org/10.1109/INDIN.2015.7281980

  30. Mazak, A., Wimmer, M., Huemer, C., Kappel, G., Kastner, W.: Rahmenwerk zur modellbasierten horizontalen und vertikalen Integration von Standards für Industrie 4.0. In: Vogel-Heuser, B., Bauernhansl, T., ten Hompel, M. (eds.) Handbuch Industrie 4.0. Springer NachschlageWissen, Springer (2015). https://doi.org/10.1007/978-3-662-45537-1_94-1

  31. McCarthy, W.E.: The REA accounting model: A generalized framework for accounting systems in a shared data environment. The Accounting Review 57(3), 554–578 (1982)

    Google Scholar 

  32. Micouin, P.: Model Based Systems Engineering: Fundamentals and Methods. John Wiley & Sons (2014)

    Google Scholar 

  33. Novák, P., Vyskočil, J., Wally, B.: The digital twin as a core component for Industry 4.0 smart production planning. In: Proceedings of the 21st IFAC World Congress. pp. 10803–10809 (2020). https://doi.org/10.1016/j.ifacol.2020.12.2865

  34. Object Management Group: Business process model and notation (BPMN) (2013), 2.0.2

    Google Scholar 

  35. Object Management Group: OMG unified modeling language (UML) (2017), 2.5.1

    Google Scholar 

  36. Object Management Group: OMG meta object facility (MOF) core specification (2019), 2.5.1

    Google Scholar 

  37. Object Management Group: OMG systems modeling language (SysML) (2019), 1.6

    Google Scholar 

  38. Plattform Industrie 4.0: Details of the asset administration shell (2020), part 1 - The exchange of information between partners in the value chain of Industrie 4.0 (Version 3.0RC01)

    Google Scholar 

  39. Polczer, P.F.: Towards Model-Driven Vertical Integration – using IEC 62264 and REA to facilitate real-time data exchange between manufacturing and enterprise systems. Diploma thesis, Faculty of Informatics, TU Wien (2021)

    Google Scholar 

  40. Premkumar, G., Ramamurthy, K., Nilakanta, S.: Implementation of electronic data interchange: An innovation diffusion perspective. Journal of Management Information Systems 11(2), 157–186 (1994). https://doi.org/10.1080/07421222.1994.11518044

    Article  Google Scholar 

  41. Ragowsky, A., Somers, T.M.: Enterprise resource planning. Journal of Management Information Systems 19(1), 11–15 (2002). https://doi.org/10.1080/07421222.2002.11045718

    Article  Google Scholar 

  42. Ricciotti, F.: From value chain to value network: a systematic literature review. Management Review Quarterly 70(2), 191—212 (2020). https://doi.org/10.1007/s11301-019-00164-7

    Article  Google Scholar 

  43. Rosen, R., von Wichert, G., Lo, G., Bettenhausen, K.D.: About the importance of autonomy and digital twins for the future of manufacturing. In: Proceedings of the 15th IFAC Symposium on Information Control Problems in Manufacturing. vol. 48, pp. 567–572 (2015). https://doi.org/10.1016/j.ifacol.2015.06.141

  44. Schleipen, M., Drath, R.: Three-view-concept for modeling process or manufacturing plants with AutomationML. In: Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) (2009). https://doi.org/10.1109/ETFA.2009.5347260

  45. UN/CEFACT: UML Profile for UN/CEFACT’s Modeling Methodology (UMM), Foundation Module, Version 2.0 (Apr 2011), https://unece.org/DAM/cefact/umm/UMM_Foundation_Module_V2.0.pdf

  46. Vogel-Heuser, B.: Herausforderungen und Anforderungen aus Sicht der IT und der Automatisierungstechnik. In: Bauernhansl, T., ten Hompel, M., Vogel-Heuser, B. (eds.) Industrie 4.0 in Produktion, Automatisierung und Logistik: Anwendung Technologien Migration, pp. 37–48. Springer (2014). https://doi.org/10.1007/978-3-658-04682-8_2

  47. Vogel-Heuser, B., Brodbeck, F., Kugler, K., Passoth, J.H., Maasen, S., Reif, J.: BPMN+I to support decision making in innovation management for automated production systems including technological, multi team and organizational aspects. In: Proceedings of the 21st IFAC World Congress (2020)

    Google Scholar 

  48. Vogel-Heuser, B., Kegel, G., Bender, K., Wucherer, K.: Global information architecture for industrial automation. Automatisierungstechnische Praxis (atp) 51, 108–115 (01 2009)

    Google Scholar 

  49. Wally, B.: Smart Manufacturing Systems: Model-Driven Integration of ERP and MOM. PhD Thesis, Faculty of Informatics, TU Wien (2020)

    Google Scholar 

  50. Wally, B.: Provisioning for MES and ERP. https://www.automationml.org/ (2021), Application Recommendation

  51. Wally, B., Huemer, C., Mazak, A.: Aligning business services with production services: The case of REA and ISA-95. In: Proceedings of the 10th IEEE International Conference on Service Oriented Computing and Applications (SOCA). pp. 9–17 (2017). https://doi.org/10.1109/SOCA.2017.10

  52. Wally, B., Huemer, C., Mazak, A.: Entwining plant engineering data and ERP information: Vertical integration with AutomationML and ISA-95. In: Proceedings of the 3rd IEEE International Conference on Control, Automation and Robotics (ICCAR) (2017). https://doi.org/10.1109/ICCAR.2017.7942718

  53. Wally, B., Huemer, C., Mazak, A.: ISA-95 based task specification layer for REA in production environments. In: Proceedings of the 11th International Workshop on Value Modeling and Business Ontologies (VMBO) (2017)

    Google Scholar 

  54. Wally, B., Huemer, C., Mazak, A.: A view on model-driven vertical integration: Alignment of production facility models and business models. In: Proceedings of the 13th IEEE International Conference on Automation Science and Engineering (CASE) (2017). https://doi.org/10.1109/COASE.2017.8256235

  55. Wally, B., Lüder, A.: AML-based enterprise control system integration by IEC 62264. In: Drath, R. (ed.) AutomationML – The Industrial Cookbook, pp. 451–466. De Gruyter Oldenbourg (2021). https://doi.org/10.1515/9783110745979-026

  56. Wally, B., Mazak, A., Kratzwald, B., Huemer, C.: Model-driven retail information system based on REA business ontology and Retail-H. In: Proceedings of the 17th IEEE Conference on Business Informatics (CBI). vol. 1, pp. 116–124 (2015). https://doi.org/10.1109/CBI.2015.49

  57. Wally, B., Mazak, A., Kratzwald, B., Huemer, C., Regatschnig, P., Mayrhofer, D.: REAlist – a tool demo. In: Proceedings of the 9th International Workshop on Value Modeling and Business Ontology (VMBO) (2015)

    Google Scholar 

  58. Wally, B., Schleipen, M., Schmidt, N., D’Agostino, N., Henßen, R., Hua, Y.: AutomationML auf höheren Automatisierungsebenen. In: Proceedings of AUTOMATION 2017. No. 2293 in VDI-Berichte, VDI-Verlag (2017)

    Google Scholar 

  59. Wally, B., Vyskočil, J., Novák, P., Huemer, C., Šindelár, R., Kadera, P., Mazak, A., Wimmer, M.: Flexible production systems: Automated generation of operations plans based on ISA-95 and PDDL. Robotics and Automation Letters 4(4), 4062–4069 (2019). https://doi.org/10.1109/LRA.2019.2929991

    Article  Google Scholar 

  60. Wally, B., Vyskočil, J., Novák, P., Huemer, C., Šindelár, R., Kadera, P., Mazak, A., Wimmer, M.: Production planning with IEC 62264 and PDDL. In: Proceedings of the 17th IEEE International Conference on Industrial Informatics (INDIN). pp. 492–499 (2019). https://doi.org/10.1109/INDIN41052.2019.8972050

  61. Wally, B., Vyskočil, J., Novák, P., Huemer, C., Šindelář, R., Kadera, P., Mazak-Huemer, A., Wimmer, M.: Leveraging iterative plan refinement for reactive smart manufacturing systems. IEEE Transactions on Automation Science and Engineering 18(1), 230–243 (2021). https://doi.org/10.1109/TASE.2020.3018402

    Article  Google Scholar 

  62. Witsch, M.: MES-Modeling Language – Eine Beschreibungssprache für die interdisziplinäre Anforderungserhebung und Spezifikation von MES. In: Vogel-Heuser, B. (ed.) Erhöhte Verfügbarkeit und transparente Produktion, pp. 80–101. kassel university press (2011)

    Google Scholar 

  63. Witsch, M., Vogel-Heuser, B.: Towards a formal specification framework for manufacturing execution systems. IEEE Transactions on Industrial Informatics 8(2), 311–320 (2012). https://doi.org/10.1109/TII.2012.2186585

    Article  Google Scholar 

  64. Zapletal, M., Schuster, R., Liegl, P., Huemer, C., Hofreiter, B.: The UN/CEFACT modeling methodology UMM 2.0: Choreographing business document exchanges. In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management 1, Introduction, Methods, and Information Systems, 2nd Ed, pp. 625–647. International Handbooks on Information Systems, Springer (2015). https://doi.org/10.1007/978-3-642-45100-3_27

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Huemer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wally, B., Huemer, C., Vogel-Heuser, B. (2023). Modelling the Top Floor: Internal and External Data Integration and Exchange. In: Vogel-Heuser, B., Wimmer, M. (eds) Digital Transformation. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65004-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-65004-2_12

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-65003-5

  • Online ISBN: 978-3-662-65004-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics