Skip to main content

Zukunftsnavigator Chirurgierobotik: Der Weg zur Ko-Operation zwischen menschlichen Experten und lernenden Maschinen

  • 1560 Accesses

Zusammenfassung

Zweifelsohne hat die Nutzung von Telemanipulatoren und Robotersystemen in den letzten Jahren den chirurgischen Alltag verändert. Dieser Beitrag stellt vergangene und aktuelle Chirurgieroboter im klinischen Einsatz und in der Forschung dar. Basierend darauf werden zukünftige Entwicklungen sowie Herausforderungen für die Zukunft abgeleitet. Zunehmend werden nun steuerbare und flexible robotische Instrumente für die Chirurgie erforscht, die mit hoher Präzision durch den Körper navigiert werden. Unabhängig von ihrer Kinematik wird die nächste Generation von Chirurgierobotern aus medizinischen Daten lernen. So ebnet sich der Weg für kognitive Roboter, die ihre Umwelt wahrnehmen, von Chirurgen lernen sowie (teil-)autonom bei chirurgischen Schritten unterstützen können und damit ein echtes Ko-Operieren mit den menschlichen Chirurginnen ermöglichen. Diese neue Generation von Chirurgierobotik erfordert multidisziplinäre Kooperation unterschiedlicher Expertisen sowie die Ausbildung des klinischen und technischen Nachwuchses über ihre eigenen fachlichen Grenzen hinaus. Autonome Robotersysteme in der Chirurgie werden in Zukunft neue Fragen der Verantwortungsverteilung aufwerfen. Interdisziplinäre Kooperation und transparente Kommunikation mit allen Entscheidungsträgerinnen und Patienten ermöglichen, sowohl Risiken dieser neuartigen Systeme als auch ihr Potenzial für sicherere und effizientere Chirurgie unter gesellschaftlichen und ethischen Standpunkten für die Zukunft zu bewerten.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  • Ahmed D, Baasch T, Jang B, Pane S, Dual J, Nelson BJ (2016) Artificial Swimmers Propelled by Acoustically Activated Flagella. Nano Lett 16(8):4968–4974. https://doi.org/https://doi.org/10.1021/acs.nanolett.6b01601

    Article  Google Scholar 

  • Awad E, Dsouza S, Kim R, Schulz J, Henrich J, Shariff A, Bonnefon J-F, Rahwan I (2018) The Moral Machine experiment. Nature 563(7729):59–64. https://doi.org/https://doi.org/10.1038/s41586-018-0637-6

    Article  Google Scholar 

  • Bernal J, Tajkbaksh N, Sánchez FJ, Matuszewski BJ, Chen H, Yu L, Angermann Q, Romain O, Rustad B, Balasingham I, Pogorelov K, Choi S, Debard Q, Maier-Hein L, Speidel S, Stoyanov D, Brandao P, Córdova H, Sánchez-Montes C, Gurudu SR, Fernández-Esparrach G, Dray X, Liang J, Histace A (2017) Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results From the MICCAI 2015 Endoscopic Vision Challenge. IEEE Trans Med Imaging 36(6):1231–1249. https://doi.org/https://doi.org/10.1109/TMI.2017.2664042

    Article  Google Scholar 

  • Ceylan H, Yasa IC, Kilic U, Hu W, Sitti M (2019) Translational prospects of untethered medical microrobots. Prog Biomed Eng 1(1):012002. https://doi.org/https://doi.org/10.1088/2516-1091/ab22d5

  • Chautems C, Zeydan B, Charreyron S, Chatzipirpiridis G, Pané S, Nelson BJ (2017) Magnetically powered microrobots: a medical revolution underway? Eur J Cardiothorac Surg 51(3):405–407. https://doi.org/https://doi.org/10.1093/ejcts/ezw432

    Article  Google Scholar 

  • Collins D, Paterson HM, Skipworth RJE, Speake D (2021) Implementation of the Versius robotic surgical system for colorectal cancer surgery: First clinical experience. Colorectal Dis Off J Assoc Coloproctology G B Irel. https://doi.org/https://doi.org/10.1111/codi.15568

    Article  Google Scholar 

  • Coughlin GD, Yaxley JW, Chambers SK, Occhipinti S, Samaratunga H, Zajdlewicz L, Teloken P, Dunglison N, Williams S, Lavin MF, Gardiner RA (2018) Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: 24-month outcomes from a randomised controlled study. Lancet Oncol 19(8):1051–1060. https://doi.org/https://doi.org/10.1016/S1470-2045(18)30357-7

    Article  Google Scholar 

  • Davies BL, Hibberd RD, Ng WS, Timoney AG, Wickham JEA (1991) The Development of a Surgeon Robot for Prostatectomies. Proc Inst Mech Eng [H] 205(1):35–38. https://doi.org/https://doi.org/10.1243/PIME_PROC_1991_205_259_02

    Article  Google Scholar 

  • Engay E, Bunea A-I, Bañas AR, Glückstad J (2018) Light Robotics for Nanomedicine

    Google Scholar 

  • Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118. https://doi.org/https://doi.org/10.1038/nature21056

    Article  Google Scholar 

  • Farooq MU, Xu B, Ko SY (2019) A concentric tube-based 4-DOF puncturing needle with a novel miniaturized actuation system for vitrectomy. Biomed Eng OnLine 18(1):46. https://doi.org/https://doi.org/10.1186/s12938-019-0666-x

    Article  Google Scholar 

  • Gafford JB, Webster S, Dillon N, Blum E, Hendrick R, Maldonado F, Gillaspie EA, Rickman OB, Herrell SD, Webster RJ (2020) A Concentric Tube Robot System for Rigid Bronchoscopy: A Feasibility Study on Central Airway Obstruction Removal. Ann Biomed Eng 48(1):181–191. https://doi.org/https://doi.org/10.1007/s10439-019-02325-x

    Article  Google Scholar 

  • Gerboni G, Greer JD, Laeseke PF, Hwang GL, Okamura AM (2017) Highly Articulated Robotic Needle Achieves Distributed Ablation of Liver Tissue. IEEE Robot Autom Lett 2(3):1367–1374. https://doi.org/https://doi.org/10.1109/LRA.2017.2668467

    Article  Google Scholar 

  • Glückstad J, Palima D, Villangca M, Banas A (2016) 3D light robotics. In: Gu B, Helvajian H, Piqué A (eds). San Francisco, California, United States, p 97380A

    Google Scholar 

  • He X, van Geirt V, Gehlbach P, Taylor R, Iordachita I (2015) IRIS: Integrated Robotic Intraocular Snake. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). pp 1764–1769

    Google Scholar 

  • Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372–375. https://doi.org/https://doi.org/10.1038/nature11076

    Article  Google Scholar 

  • Jamjoom AAB, Jamjoom AMA, Marcus HJ (2020) Exploring public opinion about liability and responsibility in surgical robotics. Nat Mach Intell 2(4):194–196. https://doi.org/https://doi.org/10.1038/s42256-020-0169-2

    Article  Google Scholar 

  • Jørgensen SL, Mogensen O, Wu C, Lund K, Iachina M, Korsholm M, Jensen PT (2019) Nationwide Introduction of Minimally Invasive Robotic Surgery for Early-Stage Endometrial Cancer and Its Association With Severe Complications. JAMA Surg 154(6):530–538. https://doi.org/https://doi.org/10.1001/jamasurg.2018.5840

    Article  Google Scholar 

  • Karstensen L, Behr T, Pusch TP, Mathis-Ullrich F, Stallkamp J (2020) Autonomous guidewire navigation in a two dimensional vascular phantom. Curr Dir Biomed Eng 6(1). https://doi.org/10.1515/cdbme-2020-0007

  • Kazanzides P, Mittelstadt BD, Musits BL, Bargar WL, Zuhars JF, Williamson B, Cain PW, Carbone EJ (1995) An integrated system for cementless hip replacement. IEEE Eng Med Biol Mag 14(3):307–313. https://doi.org/https://doi.org/10.1109/51.391772

    Article  Google Scholar 

  • Kwoh YS, Hou J, Jonckheere EA, Hayati S (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35(2):153–160. https://doi.org/https://doi.org/10.1109/10.1354

    Article  Google Scholar 

  • Lim JH, Lee WJ, Choi SH, Kang CM (2020) Cholecystectomy using the Revo-i robotic surgical system from Korea: the first clinical study. Updat Surg. https://doi.org/https://doi.org/10.1007/s13304-020-00877-5

    Article  Google Scholar 

  • Lowrance WT, Eastham JA, Savage C, Maschino AC, Laudone VP, Dechet CB, Stephenson RA, Scardino PT, Sandhu JS (2012) Contemporary open and robotic radical prostatectomy practice patterns among urologists in the United States. J Urol 187(6):2087–2092. https://doi.org/https://doi.org/10.1016/j.juro.2012.01.061

    Article  Google Scholar 

  • Maier-Hein L, Vedula SS, Speidel S, Navab N, Kikinis R, Park A, Eisenmann M, Feussner H, Forestier G, Giannarou S, Hashizume M, Katic D, Kenngott H, Kranzfelder M, Malpani A, März K, Neumuth T, Padoy N, Pugh C, Schoch N, Stoyanov D, Taylor R, Wagner M, Hager GD, Jannin P (2017) Surgical data science for next-generation interventions. Nat Biomed Eng 1(9):691–696. https://doi.org/https://doi.org/10.1038/s41551-017-0132-7

    Article  Google Scholar 

  • Marescaux J, Rubino F (2003) The ZEUS robotic system: experimental and clinical applications. Surg Clin N Am :11

    Google Scholar 

  • McDermott H, Choudhury N, Lewin-Runacres M, Aemn I, Moss E (2020) Gender differences in understanding and acceptance of robot-assisted surgery. J Robot Surg 14(1):227–232. https://doi.org/https://doi.org/10.1007/s11701-019-00960-z

    Article  Google Scholar 

  • Michalec O, O’Donovan C, Sobhani M (2021) What is robotics made of? The interdisciplinary politics of robotics research. Humanit Soc Sci Commun 8(1):65. https://doi.org/https://doi.org/10.1057/s41599-021-00737-6

    Article  Google Scholar 

  • O’Meara S (2020) Medical robotics in China: the rise of technology in three charts. Nature 582(7813):S51–S52. https://doi.org/https://doi.org/10.1038/d41586-020-01795-7

    Article  Google Scholar 

  • O’Sullivan S, Nevejans N, Allen C, Blyth A, Leonard S, Pagallo U, Holzinger K, Holzinger A, Sajid MI, Ashrafian H (2019) Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery. Int J Med Robot 15(1):e1968. https://doi.org/https://doi.org/10.1002/rcs.1968

  • Park JS, Choi G-S, Park SY, Kim HJ, Ryuk JP (2012) Randomized clinical trial of robot-assisted versus standard laparoscopic right colectomy. Br J Surg 99(9):1219–1226. https://doi.org/https://doi.org/10.1002/bjs.8841

    Article  Google Scholar 

  • Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T, Balasubramanian V, Russo AM, Rajmane A, Cheung L, Hung G, Lee J, Kowey P, Talati N, Nag D, Gummidipundi SE, Beatty A, Hills MT, Desai S, Granger CB, Desai M, Turakhia MP (2019) Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N Engl J Med 381(20):1909–1917. https://doi.org/https://doi.org/10.1056/NEJMoa1901183

    Article  Google Scholar 

  • Puntambekar SP, Goel A, Chandak S, Chitale M, Hivre M, Chahal H, Rajesh KN, Manerikar K (2020) Feasibility of robotic radical hysterectomy (RRH) with a new robotic system. Experience at Galaxy Care Laparoscopy Institute. J Robot Surg. https://doi.org/10.1007/s11701-020-01127-x

  • Rox MF, Ropella DS, Hendrick RJ, Blum E, Naftel RP, Bow HC, Herrell SD, Weaver KD, Chambless LB, Webster III RJ (2020) Mechatronic Design of a Two-Arm Concentric Tube Robot System for Rigid Neuroendoscopy. IEEEASME Trans Mechatron 25(3):1432–1443. https://doi.org/https://doi.org/10.1109/TMECH.2020.2976897

    Article  Google Scholar 

  • Šabanović S (2010) Robots in Society, Society in Robots. Int J Soc Robot 2(4):439–450. https://doi.org/https://doi.org/10.1007/s12369-010-0066-7

    Article  Google Scholar 

  • Samalavicius NE, Janusonis V, Siaulys R, Jasėnas M, Deduchovas O, Venckus R, Ezerskiene V, Paskeviciute R, Klimaviciute G (2020) Robotic surgery using Senhance® robotic platform: single center experience with first 100 cases. J Robot Surg 14(2):371–376. https://doi.org/https://doi.org/10.1007/s11701-019-01000-6

    Article  Google Scholar 

  • Scali M, Breedveld P, Dodou D (2019) Experimental evaluation of a self-propelling bio-inspired needle in single- and multi-layered phantoms. Sci Rep 9(1):19988. https://doi.org/https://doi.org/10.1038/s41598-019-56403-0

    Article  Google Scholar 

  • Scali M, Pusch TP, Breedveld P, Dodou D (2017) Ovipositor-inspired steerable needle: design and preliminary experimental evaluation. Bioinspir Biomim 13(1):016006. https://doi.org/https://doi.org/10.1088/1748-3190/aa92b9

  • Stephan D, Darwich I, Willeke F (2021) The TransEnterix European Patient Registry for Robotic-Assisted Laparoscopic Procedures in Urology, Abdominal, Thoracic, and Gynecologic Surgery (“TRUST”). Surg Technol Int 38

    Google Scholar 

  • Stolzenburg J-U, Holze S, Neuhaus P, Kyriazis I, Do HM, Dietel A, Truss MC, Grzella CI, Teber D, Hohenfellner M, Rabenalt R, Albers P, Mende M (2021) Robotic-assisted Versus Laparoscopic Surgery: Outcomes from the First Multicentre, Randomised, Patient-blinded Controlled Trial in Radical Prostatectomy (LAP-01). Eur Urol. https://doi.org/https://doi.org/10.1016/j.eururo.2021.01.030

    Article  Google Scholar 

  • Tang B, He F, Liu D, Fang M, Wu Z, Xu D (2020) AI-aided design of novel targeted covalent inhibitors against SARS-CoV-2. bioRxiv :2020.03.03.972133. https://doi.org/10.1101/2020.03.03.972133

  • Ullrich F, Bergeles C, Pokki J, Ergeneman O, Erni S, Chatzipirpiridis G, Pané S, Framme C, Nelson BJ (2013) Mobility Experiments With Microrobots for Minimally Invasive Intraocular Surgery. Invest Ophthalmol Vis Sci 54(4):2853–2863. https://doi.org/https://doi.org/10.1167/iovs.13-11825

    Article  Google Scholar 

  • US Food and Drug Administration (2021) Artificial Intelligence and Machine Learning in Software as a Medical Device. FDA

    Google Scholar 

  • Veiga T da, Chandler JH, Lloyd P, Pittiglio G, Wilkinson NJ, Hoshiar AK, Harris RA, Valdastri P (2020) Challenges of continuum robots in clinical context: a review. Prog Biomed Eng 2(3):032003. https://doi.org/https://doi.org/10.1088/2516-1091/ab9f41

  • Wagner M, Bihlmaier A, Kenngott HG, Mietkowski P, Scheikl PM, Bodenstedt S, Schiepe-Tiska A, Vetter J, Nickel F, Speidel S, Wörn H, Mathis-Ullrich F, Müller-Stich BP (2021) A learning robot for cognitive camera control in minimally invasive surgery. Surg Endosc. https://doi.org/https://doi.org/10.1007/s00464-021-08509-8

    Article  Google Scholar 

  • Wei W, Simaan N (2012) Modeling, Force Sensing, and Control of Flexible Cannulas for Microstent Delivery. J Dyn Syst Meas Control 134(041004). https://doi.org/10.1115/1.4006080

  • Yang G-Z, Cambias J, Cleary K, Daimler E, Drake J, Dupont PE, Hata N, Kazanzides P, Martel S, Patel RV, Santos VJ, Taylor RH (2017) Medical robotics—Regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci Robot :2

    Google Scholar 

  • Yao Y, Liu Y, Li Z, Yi B, Wang G, Zhu S (2020) Chinese surgical robot micro hand S: A consecutive case series in general surgery. Int J Surg Lond Engl 75:55–59. https://doi.org/https://doi.org/10.1016/j.ijsu.2020.01.013

    Article  Google Scholar 

  • Yaxley JW, Coughlin GD, Chambers SK, Occhipinti S, Samaratunga H, Zajdlewicz L, Dunglison N, Carter R, Williams S, Payton DJ, Perry-Keene J, Lavin MF, Gardiner RA (2016) Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: early outcomes from a randomised controlled phase 3 study. The Lancet 388(10049):1057–1066. https://doi.org/https://doi.org/10.1016/S0140-6736(16)30592-X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Mathis-Ullrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wagner, M., Müller-Stich, B.P., Mathis-Ullrich, F. (2022). Zukunftsnavigator Chirurgierobotik: Der Weg zur Ko-Operation zwischen menschlichen Experten und lernenden Maschinen. In: Weissenberger-Eibl, M.A. (eds) Zukunftsnavigator Deutschland. Springer Gabler, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64902-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-64902-2_10

  • Published:

  • Publisher Name: Springer Gabler, Berlin, Heidelberg

  • Print ISBN: 978-3-662-64901-5

  • Online ISBN: 978-3-662-64902-2

  • eBook Packages: Business and Economics (German Language)

Publish with us

Policies and ethics