Skip to main content

Arktische Schmelze und Zukunft des Meereises

  • 1868 Accesses


Die frühe arktische Erwärmung zwischen 1920 und 1945 wird mit intern generierter Variabilität in Verbindung gebracht und durch die CMIP-Modelle nicht reproduziert.

This is a preview of subscription content, log in via an institution.

Buying options

USD   19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  • Brasseur, G., and S. Solomon, 2005, Aeronomy of the Middle Atmosphere, Reidel Co., Dordrecht, Springer, 644 S.

    Google Scholar 

  • Charney, J. G., and P. G. Drazin, 1961, Propagation of planetary-scale disturbances from the lower into the upper atmosphere, J. Geophys. Res., 36, 1205–1216.

    Google Scholar 

  • Corti, S., et al., 1999, Signature of recent climate change in frequencies of natural atmospheric circulation regimes, Nature 398, 799–802.

    Article  ADS  CAS  Google Scholar 

  • Dethloff, K., et al., 2019, Kältere Winter durch abnehmendes arktisches Meereis, Phys. in unserer Zeit, 6, 290–297.

    Article  ADS  Google Scholar 

  • Delworth, T. D., and T. R. Knutson, 2000, Simulation of early 20th century global warming, Science, 287, 2246–2250,

    Article  ADS  CAS  PubMed  Google Scholar 

  • Eyring, V., et al., 2016, Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958,

    Article  ADS  Google Scholar 

  • Fabiano, F., et al., 2021, A regime view of future atmospheric circulation, changes in northern mid-latitudes, Wea. Climate Dyn., 2, 163–180.

    Article  ADS  Google Scholar 

  • Hasselmann, K., 1976, Stochastic climate models, Theory. Tellus 28, 473–485.

    Article  ADS  Google Scholar 

  • Hasselmann, K., 1999, Climate change: Linear and nonlinear signatures, Nature, 398, 755–756.

    Article  ADS  CAS  Google Scholar 

  • Hawkins, E., and R. Sutton, 2011, The potential to narrow uncertainty in projections of regional precipitation change, Clim. Dyn., 37, 407–418.

    Article  Google Scholar 

  • Jaiser, R., et al., 2019, Interaction of diabatic processes, large-scale eddies and the mean atmospheric circulation over the Atlantic, Arctic and Eurasia. Adv. Polar Sci. 30, 81–92.

    Google Scholar 

  • Kjellström, E., et al., 2011, 21st century changes in the European climate: uncertainties derived form an ensemble of regional climate model simulations, Tellus, 63A, 24–40.

    Article  ADS  Google Scholar 

  • Latonin, M. M., et al., 2021, Multi-model ensemble mean of globale climate models fails to reproduce early twentieth century Arctic warming, Polar Science,

    Article  Google Scholar 

  • Leduc, M., et al., 2019, The ClimEx project: A 50-member ensemble of climate change projections at 12 km resolution over Europe and Northeastern North America with the Canadian Regional Climate Model (CRCM5), J. Appl. Meteorol. and Climatol.,

  • Lorenz, E., 1963, Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130–141.

    Article  ADS  MathSciNet  Google Scholar 

  • Matsumura, S., et al., 2021, Robust asymmetry of the future polar vortex is driven by tropical Pacific warming, Geophys. Res. Lett., 16,

  • Nakamura, T., et al., 2016, The stratospheric pathway for Arctic impacts on midlatitude climate, Geophys. Res. Lett., 43, 3494–3501.

    Article  ADS  Google Scholar 

  • Overland, J., et al., Nonlinear response of mid-latitude weather to the changing Arctic, Nature Climate Change, 2016, 6, 992–999.

    Google Scholar 

  • Polyakov, I. V., et al., 2010, Arctic Ocean warm-ing contributes to reduced polar ice cap. J. Phys. Oceanography, 40, 2743–2756,

    Article  ADS  Google Scholar 

  • Sempf, M., et al., 2007a, Towards understanding the dynamical origin of atmospheric regime behaviorin a baroclinic model, J. Atmos. Sci., 64, 887–904.

    Article  ADS  Google Scholar 

  • Sempf, M., et al., 2007b, Circulation regimes due to attractor merging in atmospheric models, J. Atmos.Sci., 64, 2029–2044.

    Article  ADS  Google Scholar 

  • Taylor, K. E., et al., 2012, An overview of CMIP5 and the experiment design, Bull. A. Meteorol. Soc., 93, 485–498.

    Article  ADS  Google Scholar 

  • Trentini von, F., et al., 2019, Asessing natural variability in RCM signals: comparison of a multi model EURO-CORDEX ensemble with a 50-member single model large ensemble, Clim. Dyn., 53, 1963–1979.

    Article  Google Scholar 

  • Wegmann, M., et al., 2018, Warm Arctic−cold Siberia: comparing the recent and the early 20th-century Arctic warmings, Env. Res. Lett. 13, 025009.

    Google Scholar 


  • ERA-20C Data/Figures 8.1 and 8.2 from Climate Reanalyzer (, Climate Change Institute, University of Maine, USA.

  • NCEP/NCAR Reanalyses Data/Figure 8.3 from Climate Reanalyzer (, Climate Change Institute, University of Maine, USA.

  • ECMWF ERA5 Data/Figure 8.4 from Climate Reanalyzer (, Climate Change Institute, University of Maine, USA.

  • CCSM4 RCP8.5 Ensemble Avg Data/Figures 8.5, 8.6, 8.7, 8.8 from Climate Reanalyzer (, Climate Change Institute, University of Maine, USA.

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dethloff, K. (2022). Arktische Schmelze und Zukunft des Meereises. In: Unberechenbares Klima. Springer, Berlin, Heidelberg.

Download citation

Publish with us

Policies and ethics