Skip to main content

Arktisches Meereis und Zirkulation des Ozeans

  • 1947 Accesses

Zusammenfassung

Klimaanomalien werden nicht nur durch die Atmosphäre-Meereis-Kopplung bestimmt, sondern auch die globale Ozeanzirkulation. Relativ warmes atlantisches Tiefenwasser fließt zwischen 300 bis 700 m Tiefe auf die Schelfgebiete des Arktischen Ozeans, wird hier abgekühlt, durch Meereisbildung salzhaltiger und dichter, sodass es absinken und im tiefen Ozean zurückfließen kann.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  • Crasemann, B., et al., 2017, Can preferred atmospheric circulation patterns over the North-Atlantic-Eurasian region be associated with Arctic sea ice loss, Polar Science, 14, 9-20.

    Google Scholar 

  • Dethloff, K., et al., 2019, Dynamical mechanisms of Arctic amplification, The New York Academy of Sciences, 1436, S. 184–194.

    Article  ADS  Google Scholar 

  • Dethloff, K., et al., 2022, Arctic sea ice anomalies during the MOSAiC winter 2019/20, The Cryosphere, 16, 981-1005, https://doi.org/10.5194/tc-16-981-2022.

  • EASAC 2021, Policy Report 42, A sea of change: Europe’s future in the Atlantic realm, ISBN: 978-3-8047-4262-8.

    Google Scholar 

  • Gutjahr, O., et al., 2021, Comparison of ocean vertical mixing schemes in the Max- Planck-Institute Earth System Model (MPI-ESM1.2), Geosci. Model Dev., 14, 2317–2349, https://doi.org/10.5194/gmd-14-2317-2021.

    Article  ADS  Google Scholar 

  • Jaiser, R., et al., 2012, Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation, Tellus A, 64, 11595.

    Google Scholar 

  • Jaiser, R., et al., 2016, Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations, J. Geophys. Res., 121, 7564–7577.

    Article  ADS  Google Scholar 

  • Kump, L. R., et al., 1999, The Earths system, Prentice Hall, New Jersey, 351 S.

    Google Scholar 

  • Kuhlbrodt, T., et al., 2007, On the driving processes of the Atlantic meridional overturning circulation, Rev. Geophys., 45, RG2001, https://doi.org/10.1029/2004RG000166.

  • Metzner, E. P., et al., 2020, Arctic Ocean Surface Energy Flux and the Cold Halocline in Future Climate Projections, J. Geophys. Res. Ocean, 125, https://doi.org/10.1029/2019JC015554.

  • Mori, M., et al., 2014, Robust Arctic sea‐ice influence on the frequent Eurasian cold winters in past decades. Nature Geo., 7, 869–873, https://doi.org/10.1038/ngeo2277.

    Article  ADS  CAS  Google Scholar 

  • Olbers, D., et al., 2012, Ocean Dynamics, Springer, 703 S.

    Google Scholar 

  • Polyakov V., et al., 2018, Stability of the Arctic halocline: a new indicator of arctic climate change, Env. Res. Lett., 13, S. 1748.

    Article  Google Scholar 

  • Rudels, B., et al., 1996, Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean, J. Geophys. Res., 101, 8807–8821.

    Google Scholar 

  • Rudels, B., et al., 2012, Observations in the Ocean, in Lemke P. and H.-W. Jacobi eds.), Arctic Climate Change: The ACSYS Decade, Springer, https://doi.org/10.1007/978-94-007-2027-5, 117–198.

  • Semmler, T., et al., 2021, Ocean model formulation influences transient climate response, J. Geophys. Res: Oceans, 126, e2021JC017633, https://doi.org/10.1029/2021JC017633.

  • Siegelmann, L., et al., 2019, Enhanced upward heat transport at deep submesoscale ocean fronts, Nature Geo., https://doi.org/10.1038/s41561-019-0489-1.

    Article  Google Scholar 

  • Timmermans, M. L., and J. Marshall, 2020, Understanding Arctic Ocean circulation: A review of ocean dynamics in a changing climate. J. Geophys. Res. Oceans, 125, e2018JC014378, https://doi.org/10.1029/2018JC01437.

  • Tsubouchi, T., et al., 2021, Increased ocean heat transport into the Nordic Seas and Arctic Ocean over the period 1993–2016, Nature Clim. Change, 11, 21–26.

    Google Scholar 

  • Wadhams, P., 2020, Abschied vom Eis: Ein Weckruf aus der Arktis, Springer, 368 S.

    Google Scholar 

  • Zhurbas, N. and N. Kuzmina, 2020, Variability of the thermohaline structure and transport of Atlantic water in the Arctic Ocean based on NABOS (Nansen and Amundsen Basins Observing System) hydrography data, Ocean Sci., 16, 405–421, https://doi.org/10.5194/os-16-405-2020.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dethloff, K. (2022). Arktisches Meereis und Zirkulation des Ozeans. In: Unberechenbares Klima. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64900-8_7

Download citation

Publish with us

Policies and ethics